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SUMMARY

In the present context, a compliant robotic structure is one or more

continually flexible beams whose motion can be controlled to manipulate

objects. Typically, a single beam is comprised of many hollow tube elements

placed end-to-end, where each tube element moves in a particular way when

pressurized with air. Each tube element, made of a reinforced polymeric

material, is designed with directional stiffness properties so that tube

motion (bending, twisting, extension, coiling) is predictable for a given

* external loading and internal pressure history. The basic objectives are to

develop theories for the motion and control of selected single elements and

multiple element systems (beams) to be used a light-weight, fast-acting

manipulators.

To meet the objectives, the first year of this three-year project was

focused on three separate yet related topics. The first involved studies of

an elephant's trunk from the viewpoint of a compliant, continuously flexible

manipulator. The relationships among the load-carrying capacity, material (or

muscle) properties and trunk geometry were investigated and are reported in

Chapter I. Using clues from this animal study, particularly the observations

of how a trunk coils around an object and then lifts it, the second study

involving the nonlinear mechanics of bending and coiling tube-type element

systems was carried out. Those results are reported in Chapter II. The third

study employed the linear theory of elasticity to predict the load and

deformation behavior of cylindrical tubes with orthotrophy in the form of

constant angle heli~cs. The quantative results given in Chapter III show that

such a tube element can be used as a torsion actuator, or a manipulator that

twists about its longitudinal axis when pressurized.
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1. MECHANICS OF AN ELEPHANT TRUNK:

THEORY AND MEASUREMENTS

ABSTRACT

Elephant trunks are versatile and strong. Their mechanical design may

therefore be used as a source of ideas for the design of versatile, strong

robotic manipulators. In this paper a mathematical model of an elephant trunk

lifting a weight is developed based on assumptions parallel to those used in

the analysis of prestressed, linear, composite beams. Data on overall trunk

geometry obtained during weight-lifting and data for the trunk muscle distri-

bution at a cross section are used to calculate an apparent tangent modulus

for the trunk tissue. During a change in trunk curvature for which the uni-

form component of longitudinal prestrain remains a constant 30 percent, a

typical value for the apparent modulus is of the order of 106N/m2. This study

represents an initial step toward more refined analyses that rationally relate

the loading, the overall trunk geometry and the muscle structure while satis-

fying equilibrium conditions.



I NTRODUCT ION

The trunk of an elephant is a tapering muscular structure, completely

lacking rigid materials, of nearly circular cross-section. It is versatile

and strong; trunks can shorten, extend, bend, and twist, and elephants have

been trained to lift and manipulate masses of up to 300 kg with their trunks.

This study is part of a larger study exploring the mechanics of trunk motion

and strength, and aimed at discovering principles of trunk design that may be

used in the design of similar, continuously flexible, versatile, strong

robotic manipulators. A further discussion of animal muscular hydrostats and

robotic mechanics is given by Wilson (1984).

The purpose of the present study is to correlate original data for the

overall geometry of a trunk lifting a load with the reactive forces of the

trunk muscles, to measure the average longitudinal strain of a trunk lifting a

weight, and then to calculate an apparent modulus of trunk tissue. The

apparent modulus is defined as the average tangent modulus for all of the

longitudinal and oblique muscle tissue at a given cross section. This average

tangent modulus Ea represents the slope of the stress-strain curve in a uni-

axial test in which this whole muscle group has a uniform longitudinal pre-

strain &.0 The method used to calculate the modulus is one that does not

require dissection of the animal involved, and may be used by zoologists

interested in the apparent modulus of other animal appendages. This modulus

calculated for the trunk may be used as a guide in choosing a material for

trunk-like robotic manipulators.

The size and distribution of the trunk's four basic muscle masses--the

radial, the longitudinal, and the two oblique layers--probably account for the

elephant's ability to grasp and manipulate loads with its trunk. Although the

role of each muscle type in trunk movement and load manipulation is not fully
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understood, it is probable that one can draw parallels to the mechanical

behavior of squid tentacles and vertebrate tongues as outlined by Kier (1982).

In this case contraction of selected oblique muscles would lead to torsion of

the trunk about the longitudinal axis, uniform contraction of radial muscles

would lead to uniform trunk lengthening, and contraction of longitudinal and

radial muscles, acting separately or together on one side of the trunk, would

lead to trunk bending.

In this analysis the longitudinal trunk loads (self-weight and payload)

are assumed to be supported solely by the tensions of the longitudinal and

oblique muscles. The corresponding longitudinal strain has two components: a

relatively larger, uniform, contraction prestrain (observed to be 20 to 35

percent before and during lifting); and a relatively small strain (two percent

maximum) due to trunk bending and curvature--as the payload is lifted. In

achieving the uniform contraction prestrain, the stress-strain behavior is

probably very nonlinear. The tangent modulus (the slope of the stress-strain

curve) may increase dramatically since muscles are much stiffer after con-

traction (Yamada and Evans, 1970). For the small strains associated only with

trunk bending and small changes in trunk curvature between two states of lift-

ing the payload, the analysis is based on classical beam theory. That is, the

* trunk is assumed to be composed of a linear, composite material (the longi-

tudinal and oblique muscles) for which the apparent modulus on the side of the

neutral axis under the least muscle tension is the same as the apparent

modulus on the other side under the most muscle tension. The apparent modulus

of this analysis, then, represents the average value of the tangent modulus

for the muscles involved in incremental bending, given a uniform prestrain.

The analysis implies that during incremental bending there is no change in

chemical structure of the material with load other than the strains imposed on

5' 3



the chemical bonds by the load. Clearly, the trunk of a live elephant may not

exactly satisfy all of the assumptions and conditions. However, local varia-

tions in the modulus of the components of muscle cells and fibrous connective

tissues, and other local variations such as possible shifts in the neutral

bending axis and possible nonlinear bending strain distributions, would have

little effect on either the average apparent modulus for the load-carrying

tissue acting as a group, or on the overall mechanical performance of the

trunk. The approach herein represents the first step towards a more refined

and accurate analysis of the trunk.

Briefly, the analysis and measurements proceed as follows. As described

in the Mathematical Model and Analysis section, a linear strain distribution

at a cross section and force equilibrium were used to calculate the location

"N of the neutral axis of the trunk. To do this the cross-sectional a-,eas of

muscles were obtained from a drawing of a trunk cross-section and a discussion

of detailed trunk morphology presented in the classical study of the

elephant's head by Boas and Paulli (1908). The drawing of the cross-section

was then estimated to coincide with a particular location along the length of

the trunk. At this location the radii of curvature po and p, at two lift

positions were measured from films we took of an elephant lifting a known

weight with its trunk. The second moment of area of the muscles, 1, was

determined from the size and distribution of the muscles in the Boas and

Paulli cross-section. Based on moment equilibrium, po, P1, and I were then

used, as described below, to calculate the apparent modulus of trunk tissue.

This paper Is divided into four parts. In the first two, the Muscle

Morphology section and the Lifting Experiments section, we describe the

sources of our measured data. We develop our mechanical model of the trunk in

the mathematical Model and Analysis section. We then present our calculated

data in the Numerical Results and Discussion section.

4



V L-L

MUSCLE MORPHOLOGY

Figure 1 presents a schematic drawing adapted from Boas and Paulli (1908)

showing the placement and orientation of the four basic muscle masses and the

*.~. .,two main tendinous masses in a trunk of Elephas maximus, the Asian elephant.

Longitudinal sheets of radial muscles radiate from the connective tissue around

the two nostrils. These muscles insert dorsally and laterally into tendinous

leaves, not shown in this figure. which in turn radiate and connect to a-long

tendinous sheet, which is shown, covering the dorsal and lateral muscle of the

trunk. The outer insertion of the ventral radial muscles is not known. Longi-

tudinal muscles run in the channels formed dorsally and laterally. by the radi-

ating muscles. Some of the longitudinal muscles insert into the radiating

tendons attached to the radiating muscles, and some end in the center of the

trunk where their insertion is less obvious.

Two layers of oblique muscle, oriented in opposite directions and one

interior to the other, run down the ventral side of the trunk. Both of these

muscle masses are symmetrical about the sagittal plane. The outer layer

inserts ventrally along the sides of a long ventral tendon and runs laterally

to insert along the sides of the dorso-lateral tendinous sheet. The inner

layer inserts ventrally into the inner portion of the ventral tendon, and the

lateral insertion of this muscle mass is not known. The orientation of the

'7 oblique muscles changes down the length of the trunk. Proximally the outer

layer is almost transverse in orientation, but it gradually changes so that

distally the fibers run almost longitudinally. The inner layer is exactly the

0 reverse. Proximally, the inner oblique muscle fibers run almost longitudinally

and distally they run almost transversely. Both the dorso-lateral and ventral

tendons are separated proximally from the skin by a layer of loose connective

tissue; further down the trunk they are more intimately connected to the skin.
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We took 16 num movies of two mature Asian elephants at the National Zoo in

Washington. D.C. This involved filming the trunks while the elephants lifted

payloads at the tips of their trunks. These elephants had trunks about 1.5 m

long when in a fully extended, relaxed state. The nominal outside diameters of

these trunks were about 32 cm at the head and 8 cm at the tip.

For our analysis, we used both data from films and data obtained from

drawings of cross-sections of an elephant's trunk from the Boas and Paulli

treatise. A composite of such cross-sections is shown in Figure 1. Based on

) the position of radial muscles below the nostrils, the shape of the nostrils,

and the relative thickness of the oblique muscles in cross-section, we deduced

that this particular transverse cross-section was located at posi tion A-A along

the trunk as shown in scale drawings of photographs, Figures 2. The length

scales shown in Figures 1 and 2 are those for the Asian elephant that we

filmed. The important assumption we used in deriving the particular numerical

results that follow is that the muscle mass distribution for section A-A in

Figure 2 is geometrically similar to that of Figure 1.

LIFTING EXPERIMENTS

In preparation for a typical experiment involving a live Asian elephant,

white zinc oxide spots were first painted along the midlateral line on the side

of the trunk, as shown in Figure 2. Each white spot was located along the

trunk at a distance 1i from the spot nearest the head. The trunk was photo-

graphed in what appeared to be its longest and fully relaxed state, in a near

vertical position.

The sequence of events involving the elephant lifting a payload with the

tip of its trunk was recorded using a Canon Scopic 16 m movie camera situated

about 12 m directly to the side of the animal. Trunk motion was in the

7
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Figure 2 Trunk contracted with payload on ground (a); payload at an

intermediate position (b); and payload at its highest position

(c). Traced from projected movie images.
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:4 vertical plane, parallel to the side of the animal and perpendicular to the

plane of movie images. The sequence of events was as follows.

1. The trunk tip looped around the rope attached to a payload mass of

26.2 kg. With the payload still on the ground, the entire trunk shortened and

thickened before lifting, resulting in the configuration of Figure 2a. The

average longitudinal contracted strain cu was deduced by comparing the loca-

tions of the trunk spots in the relaxed and contracted states. That is, each

spot moved from its relaxed position Xi by an amount Ali as depicted by the in-

sert of Figure 3. The results are plotted as circles in Figure 3, from which

the slope or initial strain before lifting was deduced by a least squares

straight line fit as eu z -24.4%, a nearly uniform value along the trunk.

2. The coiled trunk tip stretched a bit while the elephant lifted its

head and dragged the payload along the ground.

3. The payload was lifted by an upward motion of the head, accompanied by

a further shortening of the trunk, and a further curling motion of the whole

trunk. Figures 2b and 2c depict the trunk with the payload lifted to an inter-

mediate and the highest position. The average value of cu for these last two

positions based on the data of Figure 3 were -31.5% and -33.0% respectively.

A careful study of enlarged prints from the film showed that the radius of

curvature P traced by the white dots in the plane of motion changed signifi-

cantly. The values of p and the corresponding uncertainties in measurement±

AP at section A-A of the trunk were measured as po 1.18 m ±0.06 m and pi

1.67 m ± U.25 m, corresponding respectively to the intermediate and highest

positions of the trunk shown in Figure 2. The analysis that follows relates

these bending strains to the radius of curvature.

9
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MATHEMATICAL MODEL AND ANALYSIS

The purpose of this section is twofold: to define a rational, static,

mathematical model of the trunk muscle system that supports both the trunk

load and payload and to calculate the apparent elastic modulus of the trunk at

section A-A when the trunk is between the two positions shown in Figure 2b and

2c. A few simplifying assumptions are needed. First, the longitudinal strain

ex due only to trunk curvature p has a linear distribution from dorsal to

ventral. That is

x

where Figure 4 depicts this strain at position y from the neutral axis of

bending. This linear strain distribution superimposed on the uniform con-

tractual strain eu from muscle pretension gives the total strain at the trunk

cross section. Second, in comparison to this total strain distribution, it is

reasonable to assume that Cy = yxy - 0, where ey is the normal strain along

the y direction and Yxy is the transverse shear strain due to changes in the

bending moment and curvature along the trunk. These assumptions, which are

consistent with elementary beam theory, lead to an expression for the normal

) strain ce along the length of each oblique muscle inclined at an acute angle e

with the longitudinal axis (Figure 3 and 4) or

Ce a Excos2 e  (2)

Equation (2) follows from the strain transformation equations derived, for

instance, by Timoshenko and Goodier (1951), where Cy and Yxy are zero.

The third assumption is that the longitudinal tensile stress in each

muscle mass is linear with its longitudinal contracted strain, or

ox a " Ea ex. ae - Ea Ce (3)

where ax and Oe are the normal stresses for the longitudinal muscles and [

'.F,



oblique muscles, respectively. Here, Ea is the apparent elastic modulus of

the muscle mass, which is assumed to be the same for each muscle type.

The fourth assumption is that only the muscles carry the stresses set up

-,, by the trunk's own mass and by the payload. Thus, the tissue surrounding the

muscles, although following the linear strain distribution, has a negligible

stiffness compared to the stiffness of the activated muscles. A consequence

of these assumptions is that the neutral axis in bending does not shift for

small changes in trunk curvatures. The accuracy of these assumptions is not

known.

At a typical cross section such as A-A in Figure 4, the condition of

force equilibrium in the x direction, or perpendicular to this transverse

section, must be met. This equilibrium condition establishes the location of

the neutral axis y=O, or the plane along which the muscle strain due to trunk

curvature alone is always zero. Force equilibrium is expressed as:

V? f x dAx + f oe cOS28 dAo a 0 (4)
Ax Ao

where Ax is the total transverse cross sectional area for the longitudinal

muscles and Ao is the total observed cross sectional area of the oblique

muscles projected on the same transverse cross section (the x0O plane). From

Figure 5, it is observed that for the oblique muscles the cross section area

element normal to ce is dAocose, that the corresponding force is 0 e cose dAo,

and the component of this force projected along x is thus ve cos2f dAo, which

leads to the second integral on the left in Equation (4). With Equations (1),

(2) and (3), Equation (4) is rewritten as

J ydAx + f y cos4 6 dAo - 0 (5)
Ax Ao

SA practical way to locate the neutral axis is as follows. As shown in
A pcc w1

V. Figure 4, the neutral axis at y - 0 is located at a distance z from a datum

* W.12
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axis chosen as the ventral edge. If the centroid of the area for each muscle

i of area Axi or Aoi is located at y -Yi, then the centroidal distance zi

from the datum axis is defined as

zi . Z - Yi (6)

When Equation (6) is combined with Equation (5), with the differential areas

replaced by the areas Axi and Aoi, and the integrals replaced by finite sums,

the result is a practical formula for locating the neutral axis. That is

N N
ZiA xi + I ziA oiCos4 ai

in] -(7)
N 4
SAxi + _ AoisCose t

where there are N longitudinal muscles and M oblique muscles at a cross

- section. Care must be taken to use the correct angles for the oblique muscle

areas. For instance, for section A-A of Figure 5, e = Bi - 29.1 deg for the

inner oblique muscles and 8 z 8i z 34.1 deg for the outer oblique muscles.

Having located the neutral axis, the bending strain distribution can be

I-" calculated from Equation (1) if the radius of curvature is known. Of interest

here is the change in the bending strain distribution between two loading

states at section A-A. For instance, the difference in longitudinal

muscle strain Aux for a trunk configuration in its highest position (Figure

2c) for p - Pi and in its intermediate position (Figure 2b) for p - Po is

AC . -~ L_-(-L- (8)

where

". . . Po " Pi
1 _ ~ 1(9)

At a fixed location y, the change in strain Ace in a typical oblique muscle

will always be less than Aex, or from Equation (2)

15



ace = - Ycos 8 (10)
p

Accompanying these strain changes Acx and Ace during lifting are

corresponding changes in the normal stress distributions, Aax and Aoe. These

are the muscle reactions in response to shifts in two types of external loads

causing moments at section A-A. One of these loads is due to the trunk mass

segment mt (below section A-A to the tip) which causes a differential moment

of mtg(dl-do). The other load is due to the payload mass mp which causes a

differential moment mpg(el-eo). The load offset distances do , dI, eo and e1

are defined in the free body sketches of Figure 6. For moment equilibrium at

Section A-A, it follows that

mtg(dl-d o ) + mpg(el-eo) = f y AoxdA x + f y Aoe cos 2edAo (11)

Ax Ao
Here Aox dAx and Ace cos2e dAo are the changes of the x-directed forces in the

longitudinal and oblique muscles, respectively, which, when multiplied by

their moment arms y and integrated over section A-A, leads to Equation (11).

Invoking the linear relationships of Equations (3), along with Equations (2),

(8), and (10), the differential stresses become

Ao =-Ea fcx =EaX (12)
P

ace = Ea Ace = Ea Ycos2e (13)

With Equations (12) and (13), Equation (11) can be solved for the apparent

modulus, or

Ea " [mtg(d1-d°) + mpg(el-e°)3 (14)

where p is given by Equation (9) and I, the second moment of the muscle area

with respect to the neutral axis (y-O), is

16
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Figure 6. Free body sketches of a contracted trunk at
two positions.
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ly2 dAx + f y2 COS48 dAo (15)

x A0

With a knowledge of the muiscle morphology as shown in Figure 1, along with

trunk curvatures and the loading terms, the apparent modulus Ea may be

calculated from Equations (14) and (15). Then the differential stress and

strain distributions due only to a curvature change may be calculated from

Equations (12) and (13). The appropriate measurements and typical numerical

results are now discussed.

4 NUMERICAL RESULTS AND DISCUSSION

To obtain the desired numerical results, a clear and properly scaled out-

line of the longitudinal and oblique muscle areas at Section A-A is needed.

Such a drawing, deduced from the Boas and Paulli treatise (1908) is shown in

Figure 7. This muscle distribution and the measured data listed in Table 1

were used to calculate the apparent trunk modulus. The geometry of Figure 7

was scaled to match the cross section A-A of our subject animal's trunk, for

which the section height D (Figure 4) was measured from photographs as 24 cm.

Of the 150 muscle areas shown in Figure 7, 78 are longitudinal, 51 are inner

oblique (e = 29.1 deg), and 21 are outer oblique (e - 34.1 deg). Using a fine

grid overlay, each muscle area or projected area and its respective centroidal

* distance to the datum plane was calculated. The total areas Ax and A0 are

given in Table 2. With the values of e measured from drawings in the Boas and

Paulli treatise (1908), z was calculated from Equation (7) as 12.0 cm. Since

o - 24 cm, the neutral axis lies at the mid-height of this cross section. The

value of I was then calculated by numerically integrating Equation (15),

yielding I - 427U. cm4. Of course, these numerical results, although precisely

calculated to three significant figures, are only as accurate as the artist's

* original drawings of the muscle distributions.

18
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-,' Table 1 - Summary of Measured Data

Symbol and Value Meaning

D = 24 cm trunk height (y direction) at section A-A

* do = 5.0 cm offset distance of mt (intermediate), Fig. 6a

- dl = 8.0 cm offset distance of mt (highest), Fig. 6b

- eo = 9.29 cm offset distance of mp (intermediate), Fig. 6a

e= 13.27 cm offset distance of mp (highest), Fig.. 6b

Si, Ali spot locations, plotted in Fig. 3

' mp = 26.2 kg mass of payload

mt * 16.37 kg mass of trunk from tip to section A-A

M = 78 number of longitudinal muscles at section A-A

N = 72 number of oblique muscles at section A-A

y = 1180 kg/m 3  mass density of trunk

6 = 29.1 deg inclination of inner oblique muscles, Fig. 5

: = 34.1 deg inclination of outer oblique muscles, Fig. 5

Po = 118 radius of curvature of section A-A, Fig. 6A

Pi = 167 radius of curvature at section A-A, Fig. 6b

- Apo = - 6 cm uncertainty of Po measurement

, P ± 25 cm uncertainty of pl measurement

,I.2
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Table 2 - Summary of Calculated Data

Symbol Equation
and Value Meaning or Figure

Ax z 54.6 cm2  area of all longitudinal muscles on Fig. 7
x=0 plane

Ao a 185.7 cm
2  projected area of all oblique muscles on Fig. 7

x-O plane (inner oblique: 160 cm ; outer
oblique: 25.7 cm2 )

Ea = 1.33x106 N/m2  apparent modulus of trunk Eq. (14)

AEa = + 0.532x10 6 N/m2  uncertainty in Ea Eq. (16)

I = 4270 cm4  area moment of all muscles Eq. (15)

z= 12.0 cm location of neutral axis Fig. 4

Aux = 3.22x0 4 N/m2  max. stress change, longitudinal muscle Eq. (12)

Aoe - 2.23x104 N/m2  max. stress change, inner oblique muscle Eq. 13)

Ace = 2.37x104 N/m2  max. stress change, outer oblique muscle Eq. (13)

Acx = 0.0242 max. strain change, longitudinal muscle Eq. (8)

Ace = 0.0168 max. strain change, inner oblique muscle Eq. (10)

Ace = 0.0178 max. strain change, outer oblique muscle Eq. (10)

u  -0.244 uniform strain, lowest position Fig. 3

eu M -0.315 uniform strain, intermediate position Fig. 3

cu = -0.330 uniform strain, highest position Fig. 3

p =-402 cm differential curvature Eq. (9)
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weeThe external moments at section A-A due to the payload and the trunk mass

weemeasured for the trunk in two different positions: the intermediate and

the highest positions shown in Figures 2 and 6. The reason for choosing these

two positions was that the uniform component of longitudinal trunk strain was

nearly the same for both positions (cu was 0.315 and 0.330, respectively).

* Thus, the radii of curvature p0 and pj as measured from photographs did not

need to be corrected to account for changes in cu The importance of highly

accurate measures of these radii to an accurate calculation of the apparent

modulus will be discussed below.

The quantities defining the differential moment between the selected

trunk positions are enclosed in the square brackets of Equation (14).

Measurements were made for each of these quantities. The payload mass mp was

26.2 kg. The offset distances eo and el for this load, as well as the volume

segment of the trunk from tip to section A-A, were deduced from photographs

(see Figure 6). The centroidal distances dl and d2 for this volume segment

- were calculated assuming that the volume was a series of right, truncated

cones. The volumes of the two nostrils, deduced from the Boas and Paulli

treatise, were treated as voids. The product of this volume segment and the

trunk's mass density then gave the value tnt - 16.37 kg. Our measurements of

- the mass density, made on selected samples from different areas of a dead

elephant's trunk, yielded an average mass density of 1180 kg/in3, with aN maximum variation of 8 percent among samples.

The remaining quantity needed to calculate Ea given by Equation (14) is

the differential curvature p. This is defined by Equation (9) in terms of the

k radii of curvatures p0 and p1 at section A-A. Accurate measures of these

radii were more difficult to deduce from enlarged photographs than the data

:::5 previously discussed. More closely spaced and more carefully aligned white
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4 *.'- spots along the trunk would lead to better measurements. In the present case,

Po = 118 ± 6 cm and p, = 167 - 25 cm, showing an uncertainty of 5 percent and

15 percent, respectively. For the nominal values of the radii, Equation (9)

gave p - -402 cm.

Using the measured data discussed above and summarized in Table 1, the

apparent modulus was calculated from Equation (14), or Ea = 1.33 x 106 N/m2 .

It is interesting to note that this modulus compares favorably with the

tangent modulus of human Sartorius muscle (1.77 x 106 N/m2 ) and dog Rectus

abdominis muscle (4.0 x 106 N/m2 ) at prestrains of 60 to 65 percent, as

estimated from data presented by Yamada and Evans (1970). Also, this modulus

agrees within 10 percent with Young's modulus of a commercially available,

synthetic rubber, Type A6OB*.

Further calculations lead to the differential strain distributions in the

longitudinal muscles, acx , and in the oblique muscles, Ace, and their

corresponding differential stresses, Aox and Ae6 . The maximum value for each

of these quantities was calculated from Equations (8), (10), (12) and (13)

based on the maximum distance y extending from the neutral axis to the

centroid of the most outlying muscle. The numerical results summarized in

Table 2 reveal that the maximum differential muscle strains range from about

1.7 to 2.5 percent, and the maximum differential stresses range from about 2.2

x 1U4 to 3.2 x 104 N/m2 . In fact, at any chosen distance y from the neutral

axis, calculations showed rather narrow ranges for the differential strains

and differential- stresses among the three types of muscles. It is apparent

that the muscles do a good job in sharing the load at this cross section.

Given the validity of the mathematical model, for which the main

assumptions were the linearity of strain over the cross section and the linear

*Manufactured by The Lord Corporation, Erie, PA.
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stress-strain law, the accuracy of the numerical results were found to depend

strongly on the accuracy of Po and p1. These were the most uncertain of all

of the measured parameters. The analysis of Kline and McClintock (1953) may

be used to show just how sensitive the calculation of Ea is to the measured

uncertainties Apo and ApI of Po and pl, respectively. The corresponding

uncertainty in Ea, or AEa for these two parameters only Is given by

E aE [(a )2 +( a P)2]/2 (6

,&E~ap SApAo 1 16

When p from Equation (9) is substituted Into Equation (14) and the result is

differentiated according to Equation (16), the result is

AE a 1 (14 2 °4 12)1/2 (17)

With the nominal values of the radii and their deviations as listed in Table

1, the numerical value of AEa/Ea calculated from Equation (17) is 0.40. Thus,

for relatively small uncertainties in radii (5 percent and 15 percent), the

uncertainty in the apparent modulus is 40 percent, where Ea = 1.33 x 106 H/m2

± 0.532 x 106 H/m2.

Further studies are now underway that involve microscopic studies of

muscle morphology at different cross sections in a dead elephant's trunk, and

also the direct measurements of tensile properties of connective tissue. As

further data becomes available, the present mathematical model may be refined.

Thus, more exact connections may be deduced among the trunk's system

w. parameters Including its external loading, its overall shape during lifting,

its muscle distribution, and the mechanical properties of its muscles. The

results may provide clues to future mechanical designs of continuously
,/,

- flexible robotic manipulators made of polymeric materials.

24

hil



NOMENCLATURE

Ao  total area of oblique muscles projected on the x=O plane

Aoi projected area of i-th oblique muscle on the x=O plane

Ax total cross sectional area of longitudinal muscles in the x=O plane

Axi cross sectional area of i-th longitudinal muscle on the x=O plane

D trunk height in y direction at section A-A

do~dl moment arms of mt , Figure 6

Ea apparent modulus of trunk

A a uncertainty in Ea

eoe i  moment arms for mp, Figure 6

9 gravitational constant

I second moment of muscle cross sectional areas, Equation (15)

Li distance of the i-th spot, Figure 3

M number of oblique muscles at a cross section

mp mass of pay load lifted at trunk tip

mt mass of trunk from tip to section A-A, Figure 6

N number of longitudinal muscles at a cross section

x longitudinal coordinate along trunk's neutral axis

YYi transverse coordinates measured from neutral axis, Figure 4

zi  transverse coordinate of i-th muscle, Figure 4

z location of neutral axis from ventral, Figure 4

Yxy transverse shear strain

Ex  normal strain in longitudinal muscles

Cy normal strain along y

normal contraction strain in oblique muscles

Cu uniform trunk contraction strain

ALi displacement of i-th spot along longitudinal axis

25
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Acx differential longitudinal strain due to trunk curvature change

Ace differential strain in oblique muscles due to trunk curvature change

6 acute inclination angle of oblique muscles with the x-axis

ei  value of e for the i-th oblique muscle

P radius of curvature o f trunk's neutral axis

Po value of p at section A-A, intermediate load position

Apo  uncertainty in Po

P1  value of p at section A-A, highest load position

Ap1  uncertainty in P1

p differential radius of cureature, Equation (9)

ax  normal tensile stress in longitudinal muscles

normal stress in transverse direction

normal tensile stress in oblique muscles

Aux differential stress corresponding to Acx

Ace differential stress corresponding to Ace

.. 2
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II. MECHANICS OF A CONTINUOUS MANIPULATOR MADE OF A

NONLINEAR, COMPOSITE MATERIAL

ABSTRACT

This research deals with the analysis of light weight, flexible and

fast moving robotic arms. A typical arm consisting of hallow cylindrical ele-

ments, bends and coils around a load and moves it to the desired position by

varying the internal pressures in the individual elements. The theoretical

derivations relating arm positions and loading incorporate nonlinear material

properties and large deflections. A learning program is developed that stores

information about arm motion, information that is used in subsequent manipula-

tions to achieve efficient lifting scenarios. Typical numerical results for

arm designs will be verified experimentally in the near future.
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INTRODUCTION

Robots are programmued machines designed to carry out desired tasks for

humans [1,2]. Their use in the industry is rapidly increasing and extensive

research is underway with the aim of improving their capabilities. Robots can

be used to efficiently carry out routine tasks without making the mistakes

that a human would because of fatigue. Also robots can be used in

environments which are harmful to the health of humans.

Mechanically most of the present day robots have arms consisting of

rigid members connected by hinged or pivoted joints. To move such an arm

precisely, the movements of its various members have to be coordinated. Such

robots are slow-acting because of the inertia of the members and the time

required to compute and control position.

A different approach using a light-weight, highly flexible, fast

moving arm is made in this research. Such an arm is analogous to an

elephant's trunk which has been analyzed recently [3]. It was observed that

trained elephants can efficiently coil their trunks around heavy loads and

lift them to desired positions. The present study simulates the action of an

elephant's trunk within the limits of structural feasibility. The robotic arm

is a continuous manipulator of rubber or polymeric material, consisting of

hollow cylindrical elements joined end to end. The elements are selectively

reinforced so that they bend, twist or extend when pressurized. Theoretical

derivations and computer programs are written to evaluate the internal

pressure required in each of the elements such that the arm can coil around a

load and lift it to a desired position.

This research also deals with another important aspect of robotics.

As machines cannot reason or think like humans, the robot has to be programmned

to anticipate the various options or remedial measures, in advance of motion.

Thus some aspects of Artificial Intelligence are incorporated into this

research. A new Learning Program evaluates the end moments to be applied to
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each of the elements in order to lift and position the end load. This

program's database is updated appropriately each time the program is run,

thereby increasing the apparent knowledge and efficiency of the program in

* performing load positioning calculations.

The theoretical derivations for the mechanical behavior of the

pressurized elements, the programming logic, and some numerical results for a

* typical, flexible robotic arm are discussed.

ANALYSIS OF A TYPICAL ELEMENT

*The geometry of a typical element is shown in Figure 1. It is a thin

walled cylinder with the ends sealed and with reinforcement on the underside.

The element is modelled as a cantilever beam of a nonlinear material. As in

[4], finite deflections are considered. Given the applied end moment due to

internal pressure, the horizontal and vertical deflections of the end of the

beam are evaluated. The radius of curvature of the deflected beam is also

computed. In this analysis, [5) was also used.

'1$ The hollow, cylindrical section is made out of a synthetic, nonlinear

material for which the stress strain relationship is as follows

a = Ae + Be1/n

where A, 8 and n are material constants.

The synthetic material can withstand high strains (up to 200%) without

failure. The reinforcement is made of high strength steel shim or synthetic

fibers with high tensile strength (Kevlar, for instance) as shown in Figure 2.

The reinforcement provides the strength to the structure. The neutral axis

for the composite element passes through the reinforcement because its stiff-

PU ness is muich greater in magnitude than that of the synthetic cylindrical

section. For this reason with the application of internal pressure and thus

an end moment, the element bends as shown in Figure 1. The reinforcement is

assumed to be a linear material.
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Because the cylindrical part of the composite element is made up of a

nonlinear composite material, the position of the neutral axis varies and has

to be computed for each stress distribution across the section. Given an

applied end moment Ma, the following iterative steps are required to calculate

the position of the neutral axis.

a. Choose an initial position of the neutral axis.

b. Compute the radius of curvature P for the deflected element for

the chosen position of the neutral axis.

c. Compute the moment of resistance Mc of the section for the

computed p and the chosen position of the neutral axis.

d. If the following inequality holds for a specified tolerance limit

I M
a -

Ma

then the iterations stop. Otherwise a new position of neutral

axis is chosen and steps (b) to (d) are repeated. See Appendix A

for the details of calculation.

Derivation of End Deflection Formulae

After the position of the neutral axis and the radius of curvature

have been determined for the given end moment, the end deflections are

computed in the following manner.

• .We know the moment curvature relationship as given by equation (A.21

in Appendix A). The equation is repeated here as follows

Mc = (-)a + (-)8 + (_)1/n

On rearranging the terms we yet
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p a+ 8

where

y (1)fA?- 1i y"(x)

".:"~ ~ - =, ]2 3/2 (2)

-.,p {1 + [y (x) (2)

Equating Equations (1) and (2) we get

y*(X) Mc -(3
{I + y'(x)] 2 } 3/ 2  a + (

Equation (3) is a second order differential equation which can be integrated

directly with respect to x to yield

x I W(Mc -)

U1 + Ey,(x)] 11 =a +8) xR 1

The constant of integration, cl, can be evaluated using the fact that y(O) =

0. Thus ci = U and

y'(x) (Mc -

{1 + [y'(x)] 2  }/2 (a + )

Solving for y(x) yields

(M - E)x

y (x) (4)

( + 8)2 (Mc - )2x2

by integrating once more one obtains

(a+ )- [(a + 8)2 (Mc -
2 1/2

. y(x) = (Mc - (5)

.. where the constant of integration has been evaluated using the condition that

pi y(O) : U.

. 3
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To evaluate the horizontal deflection, 6h, at the free end of the

beam, as shown in Figure 3, the equation for the arc length is used. The

total length then is

L-62
fo hi + Ey(x)] d. (6)

From Equations (5) and (6) we obtain

L-6 a-+ S

L fo h dx (7)
0 a 2 2 (M 2x2

This integral can be evaluated using the trignometric substitution.

X =M + B sin e (8)

a +

dx= M cos O d (9)

From Equation (8)

° 0 sin-l[x (Ma -+

when

x = L-6h

, -'[(L 6 (Mc -(10

(at x=L-6 h ) = 0 = sin[(L " 6h ( (10)

Using Equations (9) and (10) from Equation (7) we get

+)2
Lf (a+) cosO d6

(Mc .j a + 0)' - (a + 0)'sin 2 O

- dO
_M. - -.

M(M -

(a. +- sin -1h ([(L 
( 11(M ch5
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Figure 3. Cantilever bear~ subJected to an end mnomTent.
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ANALYSIS OF MOTION AND LOAD-CARRYING CAPACITY OF A

* CONTINUOUS MANIPULATOR ARM

The manipulator arm is made up by joining a number of the 'typical'

elements, end to end. The desired capability of the arm determines the size

and number of elements in the arm. The last few elements, (3 in our model)

coil around the load, whereas the remaining elements help in the lifting of

the load. Refer to Figure 4b.

Given an applied end moment, as shown in the prev'ious chapter, we can

evaluate the end deflections, and thus the end coordinates of the element with

respect to the local coordinate axis system of the element. These end

coordinates are transferred from local to global coordinate axis system by

using a transformation matrix.

-. Similarly we can carry out the transformations for each of the

elements and get the overall orientation of the arm in the global coordinate

axis system.

When the end moments are changed, we can by the same procedure,

compute the new orientation of the arm. The self weight of the elements is

neglected throughout in our derivations.

The horizontal deflection, 6h, at the free end can be obtained from Equation

(11) as follows

L a+8 * sn [L (c -(12)

c

The vertical deflection at the free end can be obtained by substituting (L-6h)

for x in Equation (5) to get

6 (c' + [I- cos{L (c -(13)

v T 0 (ot + OT

Thus knowing the end moment values the end deflections 6h and 6v can

be computed from equations (12) and (13) respectively, after the position of

neutral axis and the radius of curvature have been computed.
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Ficiure 4. Unpressurized elements (a) ;three end elements
pressurized (b).
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Derivation to Transfer Local End Coordinates to
Global End Coordinates

'.p

curvature p is constant. It follows from the sketch above that

LL

=-O  (14)
44

~~As th bnding moetiacntn for an frs element, the glblrnoadaiso

' 'T For the remaining elements the relationship between the local and

global axis system is as follows.

Sx x2l cos 'io sin o X

lL

o n

i Y Y2 -sin TO  cos To

where
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X

SECOND ELEMENT

Figure 5. First elewrent showing coincidence of local and global axes (a);
and second element showing displaced local axis (b).
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To is the angle which the x' axis, of the local coordinate axis system

of the element, makes with the x axis of the global coordinate axis

system.

x2,y2 are the coordinates of the origin of the local coordinate axis

system in terms of the global coordinate axis system.

Xl,yj are the coordinates of any point P in the local coordinate axis

system.

x,y are the coordinates of the same point P in the global coordinate

axis system.

In our case the point P is the end point of the deflected element.

x 1 = L - 6h
"l - (15)

* where

6h z horizontal deflection

6v = vertical deflection

For the next element

"on oc P c

The subscripts n and c mean next and current, respectively. The origin for

the local coordinate axis system for the next element, is the end coordinates

of the current element

X2n = xc
(17)

Y2n Yc

Now using the transformation matrix, the end coordinates of the next

element can be converted from the local coordinate axis system to the global

coordinate axis system. Similarly, this can be done for all the remaining

elements.
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Evaluation of End Moments

It is required to compute the end moments to be applied on each of the

elements such as to move the load from its initial position to the final

desired position.4

An example of a manipulator arm is shown in Figures 4a and 4b. The

first five elements have the shim (or reinforcement) on the right side whereasI

the remaininy five elements have it on the left side. When these elements are

pressurized there will be a reversal of curvature after the fifth element.

Also by positioning the elements in this order, the arm has added capability

in moving the load over a wider region.

Initially the load is assumed to have no mass. Then the end moments

Mp, to elastically bend the arm and move the load to its desired position are

computed.

Secondly, after the arm has reached its final configuration, we know

the coordinates of the end point of each element and also the coordinates of

the center of gravity of the load. Thus the additional moment due to the load

M.E, (the load is now supposed to have mass) can now be easily evaluated.

The total moment Mt - MP + IX
Evaluation of MP

It is observed that there is no unique set of Mp, which can shift them

load from its initial to the final position. The moments in some elements

could be increased whereas the moments in some other elements could be

decreased and the load could possibly be still in the same position. To

overcome this problem, an iterative procedure has to be used. The iteration

steps are as follows.
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a. The end moments Mp to coil the last three elements around the load

are first evaluated.

u b. For the remaining elements initial guess moment Mp values have to

be provided. (In the next chapter a better approach is explained).

c. Knowing the end moments Mp in each of the elements, we can compute

'S the end deflections (6h and 6v) and radius of curvature P. by the method

discussed in Chapter II. The transformation matrices can then be used to get

the overall orientation of the deflected arm (method is discussed earlier in

this chapter).

d. The present position of the center of gravity of the load is now

calculated as shown in Figure 6b:

xP = xd - (RL + R1+ H) cos (V

yp = Yd - (RI + R1+ H) sin (V

Now the following inequalities must be simultaneously satisfied for the

specified tolerance limits el and E2. respectively.

Ixp - ,CfI < el (18)

IYP - Yf I < e2 (19)

where xf and yf are final desired position coordinates of the center of

gravity of the load. If the inequalities (18) and (19) are not satisfied, the

moments in the elements have to be varied in such a way that the load moves

closer to the final desired position.
The present position of the load can be in any one of the four regions

shown in Figure 7. The change in moments can be done logically as follows.

V Refer to Figures 6a and 7.

i. When load is to the right and higher:

yp > yf
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Figure 6. Global position of the load (a); and global
position of the end element (b).
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Finure 7. The four regions in which the load could be
currently positioned.
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Then increase the moments in the elements of the type L.

ii. When the load is to the left and higher

xP< Xf

yP > Yf

Then decrease the moments in the elements of type L and of type

U.

iii. When the load is to the right and lower

XP > Xf

yP < yf

N. Then increase the moments in the elements of type U and of type

iv. When the load is to the left and lower

Xp < Xf

yP < yf

Then decrease the moments in the elements of type L.

After making the requisite moment changes in the elements, which

depends on the current orientation of the arm, we continue the iterative

procedure from step (b) onwards, till the condition in step (d) is satisfied.

Step (a) is carried out only once as the moments required to coil the

elements around the load cannot change since the dimensions of the load are

fixed.

Evaluation of M,

At the end of the iteration procedure, for the evaluation of Mp, the

load will be somewhere near the final desired position. In this orientation

of the arm, we know the center of gravity of the load and the end coordinates

of each element. Knowing this, we can evaluate the additional moment due to

the load.
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Since we do not precisely know the point of contact between the load

and the last 3 elements coiled around it, we assume the worst case and apply

an additional moment as given below.

Mt = W1 (R1 + RX + H)

(For the last 3 elements MX is taken as same and is on the higher side)

We can compute the additional moments in the other elements from the

free body diagram shown in Figure 8.

M1 = WI(R 1 + RX + H) cos (6)

Mjt for element type U, say element 5 is

MI = Wl(Xc - Xd) -M

MI of element type L, say element 6 is

MI = M1 - Wi(xc - xe)

Similarly we can evaluate MX for all the elements.

Now for each of the elements we can evaluate

Mt = MP + Mt

After the end moments required to be applied to each of the elements

have been evaluated, the internal pressures required in each of the elements

can easily be computed. As shown in Figure 9 (an arm with 3 elements only),

there are three end moments, M1 , M2 and M3 and three different pressures

P1, P2 and P3

where

M3 = P3wR23d 3

2 2 "I.'2 M2 = P2 - P3)wR22d2 "

Mi = (PI - P2 ) R2 1d1

where R21, R22, R23 are the internal radii and dj, d2, d3 are the distances

between the center of pressure and the neutral axis for the three elements.
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IMPLEMENTATION OF THE LEARNING CONCEPT

A FORTRAN program has been written to evaluate the end moments

required in each of the elements, to move the load to its desired position.

As mentioned in the previous chapter, apart from other input, initial guess

end moment values Mp are required to start up the iterative procedure.

nubrIt was observed that a faster converging solution was achieved (i.e.

nubrof iterations were reduced), the closer the guess values were to the

actual solution. Also the user who wants to use the robot, initially has

little or no idea about what guess values to provide. Therefore the user is

liable to input guess values which could lead to numerous iterations and

thereby waste expensive computer time.

As a remedial measure, it was decided that the program instead ot the

user should decide about the guess values. Thus the program was modified into

a 'Learning Program'. The program has a data structure, which for different

initial to final load positions, has the corresponding required end moment

values Mp. Now given an initial and final load position, the program searches

through its data structure to locate the 'guess' end moment values to start

the iterative procedure. Everytime the program is run, at the end of the

iterations, the data structure is updated appropriately, thereby increasing

the apparent knowledge of the program.

A FORTRAN program has been written, which carries out all the

iterative computations, matrix transformations etc., discussed in this

chapter. The program also takes care of another important aspect, i.e. the

user does not have to provide the initial guess end moment values Mp, to start

the iterative procedure. As discussed in the next chapter, the program

searches through its database to come up with the requisite guess values.

50

-. 7



The data structure required to implement this 'Learning Concept',

could have been appropriately implemented in a language like Pascal using tree

structures. In our case as the remaining programs were in FORTRAN, we

persisted with FORTRAN and had to use a five subscripted array as the data

structure.

Data Structure and Search Logic:

As shown in Figure 10, given the coordinates of the initial and-final

*. positions of the load, we can uniquely define the initial and final position

-* of the load, by the four parameters RAD, *, 6 and DIS. The four parameters

are defined as follows

RAD = Exi) 2 + (yi) 2]11 2  (20)

x.
* = Tan 1 [ ."] (21)

DIS = E(xf - xl) 2 + (yf - yi) 2]11 2  (22)

(xf - x.)

.cos' 1[ f DIS 1 (3)

For each set of four such parameters we have corresponding end moment

values Mp. Therefore when we search for the most accurate guess values, from

the available data structure, a search through each of the four parameters is

*required. To simplify the search procedure, a five subscripted array

D(I,J,K,L,N), was used where the

First subscript corresponds to - '*' values

Second subscript corresponds to - 'RAD' values

Third subscript corresponds to - '6' values

Fourth subscript corresponds to - 'DIS' values

Fifth subscript corresponds to - end moment values Mp.
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* ORIGIN (0,0)

RAD

13 (Xf .Yf)

(XiYi)DIS

Figure 10. Initial and final position of load defined by 0, RAO, e and
DIS with respect to the origin.
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Now it is shown in Figure 11 for each '€' we have one or more

corresponding 'RAD' values. Similarly for each 'RAD' we have one or more

corresponding '6' values and for each '0' we have one or more corresponding

'DIS' values. Finally for each 'DIS' we have the corresponding end moment

values for each element of the robotic arm.

Therefore given an initial load position (xi, Yi) and a final load

position (xf, yf), using Equations (20) to (23) we-can evaluate *e, RADe, ee

and DISe (where subscript e signifies the evaluated parameters for which we

wish to find best guess end moment values).

We can now search through the array D(I,J,K,L,N). First, we compare

'Oe' with all the '0' values in the array and choose the one which is closest

to 'Oe' value. Let the chosen value be 'Oc'.

Next we search through all the 'RAD' values, corresponding to 'Oc',

value, and find the 'RAD' value closest to 'RADe' value. Let this chosen

value be 'RADc'.

After this we search through all the 'a' values, corresponding to

'RADc' value, and find the '0' value closest to '6e' value. Let this chosen

value be 'Oc'

Similarly we search through all the 'DIS', corresponding to 'ec'

value, and find the 'DIS' value closest to 'DISe' value. Let this chosen

value be 'DISc'.

The end moment values corresponding to 'DISc', will be our initial

guess moment values for the iterative procedure. This strategy of choosing

the guess values is seen to work reasonably well.

At the end of the iterative procedure, the program computes the exact

end moments required to move the load from position (xi,yi) to position

(xf,yf).
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Figure 11. Data structure imnlementation.
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The program now updates its data structure (Array O(I,J,K,L,N)) and

*e, RALe, 6e and DISe are inserted into the data structure in the proper

places. As the array has all the values in increasing order of magnitude,

insertion into the array is not difficult. The exact end moments computed by

the program during the iterative procedure are also inserted into the array

corresponding to *e, RADe, ee and DISe.

After the program has been run for several different, initial to final

load positions, the data structure D(I,J,K,L,N), after being repeatedly up-

dated becomes sufficiently diverse. Now for a varied range of initial to

final load positions, the guess values obtained will be sufficiently accur-

ate.

The data structure is implemented by having a datafile. Everytime the

program is run the values for array D(I,J,K,L,N) are read in from this data-

file. At the end of the program, after the array D(I,J,K,L,N) has been up-

dated, we overwrite the datafile with the present values of array

I(I,J,K,L,N). In this way the updated database is available for the next run

of the program.

I" If the program has been run repeatedly which leads to the data

structure becoming very large, the searching time may be too long. To avoid

this, we can easily edit the datafile and remove the values in the range which

are seldom used and leave only those values which are repeatedly used. Also

after the datafile has reached an optimum size and we wish not to expand the

datafile anymore, all that is required is to remove the 'write to datafile

commands' from the program.
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NUMERICAL EXAMPLES AND DISCUSSION

The program TYPEL, listed in Appendix B, carries out the single

element computations discussed previously. For a prescribed end moment, the

end deflections, radius of curvature and position of the neutral axis of the

deflected element are computed. This program calls the IMSL subroutine DCADRE I
repeatedly to carry out numerical integration.

The variable list is as follows:

1) A1,B2,N = Material constants for nonlinear material, stress strain

relationship a = Ai + B2el/N

2) B1 B = Breadth of shim

3) E = Young's modulus of steel shim or reinforcement

4) H = Thickness of shim

5) Hi = H1  = Distance between neutral axis and point of connection

between shim and tubular element

6) HDIS = 6h = Horizontal end deflection of element

7) L = Length of an element
8) 91 = R1  = External radius of cylindrical element

9) R2 = R2  = Internal radius of cylindrical element

10) RHO = p = Radius of curvature of deflected element

ii) VDIS = 6v = Vertical end deflection of the element
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For an element such as shown in Figures 1 and 2, made of a polymeric

material with a thin steel shim, the following numerical values were chosen as

input parameters.

N = 0.2 (dimensionless)

Al = 20.0 psi

B2 = 50.0 psi

R1 = 0.525 inches

R2 = 0.475 inches

H = 0.015 inches

L =2.0 inches

B1 = 0.5 inches

M = 3.80 lb in.

E =3.0 x 107 psi

The results of the computations are as follows.

Hi = 0.00749 inches

RHO = 1.549 inches

VUIS = 1.121 inches

HDIS = 0.511 inches

It is noted that the position of the neutral axis (HI) is nearly at the

midheight of the steel shim. Further, the vertical deflection at the end of

the element is about one-half the element length. In this case the internal

pressure p required to produce the chosen end moment M, in terms of the

symbols of Figure 2, is

P 2 3.80 10.1 psi
wR2 2(R1 + H1 ) (0.475) 2 (C 525 + 0.00749)

Note: The remaining variables in the program hold intermediate values and are

of no significance to the user.
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The program LEARN, listed in Appendix B, carries out the computations

* discussed in Chapters III and IV. It evaluates the end moments required in

each of the elements to shift the load from one position to another.

This program can handle many different options. An element in the arm

may or may not be pressurized. The elements can be of varying geometry and

the shim can be at top or at the underside of the element. These options

allow a great variation in the motion of the arm.

Now, as previously discussed, in this program given an applied end

moment on an element, it was required to know the end deflections and radius

of curvature of the deflected element. To compute the end deflections and

radius of curvature the previously discussed program TYPEL is required. As

program LEARN goes through an iterative procedure, it would be required to run

* program TYPEL repeatedly. This could be extremely time consuming and

expensive. Instead we input into the program a two dimensional array A(I,J).

* This array consists of different end moment values with their corresponding

end deflections, radius of curvature, position of neutral axis, length of the

element and external radius of the turbular part of the element.

-J.'U'The program 'LEARN' given an end moment value MI, searches through

array A(I,J) and finds the two moment values (MA & MB) between which MI lies.

It then linearly interpolates between MA & MB to evaluate the end deflections,

radius of curvature and position of neutral axis corresponding to MI. This

- explanation will become clear by looking through the sample A(I,J) input.

/5



The variable list is as follows.

1) A(I,J) = Array which has for different end moment values, the

corresponding end deflections, radius of curvature,

length of element, position of neutral axis and the

external radius of element

2) ANG = End cumulative rotation up to that element in degrees

3) D(IJ,K,L,M) = Holds the 'apparent knowledge' data structure

4) H = Thickness of shim

5) Hi = Distance between neutral axis and point of connection

between shim and turbular part

6) HDIS = Horizontal end deflection of a particular element

7) IDIR = Contains the IMOT value of previous element

8) It4T = -3 means element deflects upwards

-' = +3 means element deflects downwards

9) INCK = to fix position of global x axis

10) IPi = +2 means element is pressurized

-- -2 means element is not pressurized

11) IPCK = 0 means no pressurized elements in the arm up till now

= 1 means pressurized element has been encountered

12) IPLT1 = -1 means shim on right side

= +1 means shim on left side

13) ITYPE = 1 means use array A(I,J)

.-2 means use array B(IJ)

14) LN = Length of an element

i) Ni = Number of identical elements (geometrical and material

properties identical and also same end moments)
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16) NN = number of elements in the arm

17) NSHIF = shift in position of neutral axis between consecutive

elements

18) NU = number of elements with shim on top

19) MM= number of data sets in A(I,J), I=1 to MM

20) R1 = outer radius of cylindrical part

22) RL = radius of load

23) SI = cumulative end rotation

24) VDIS = vertical end deflection of a particular element

25) W1 = weight of load

26) X2,Y2 = end point, values for the current element w.r.t. neutral

axis

27) X3,Y3 = end point, values for the current element w.r.t. mid

axis of element

28) XB,Yb = coordinates of c.g. of load at end of each iteration

29) XI,YI = coordinates of c.g. of load in its initial rest

position

30) XF,YF = coordinates of c.g. of load in the final desired

position

31) XORD(I),YORD(I)= coordinates of end points of the elements
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Typical numerical results were obtained for line of ten identical

elements such as shown in Figure 4(a) with all the elements unpressurized.

The requirement is to lift a 2 lb load (wI = 2) from position (XI, YI) =

V (-2.082, -14.0) as shown in Figure 4(b), to position (XF, YF) = (8.5, -8.0) as

shown in Figure 6(a). (These figures are not to scale.) The input data is as

follows.

NN = 10

MM = 10

NU = 5

RL = 1.542 inch

W1 = 2 lbs

H = 0.015 inch

XI = -2.082 inch

YI = -14.00 inch

XF = 8.5 inch

YF = -8.0 inch

The chosen dimensions of the five subscripts of array D(I,J,K,L,M)

are:

I = i to N2 = 3

J = 1 toM2 = 4

K = i to N7 = 4

L = Ito M7 = 4

M = I to MX = 13

The last dimension in each subscript holds a dummy value (-1000.0), so that

during the search procedure the entire sparse matrix need not be searched.

The overall dimensions were chosen to suit the sample problem and not waste

memory space.
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Specific data about each element has to be provided to the program.

For example, IPLT1 specifies position of shim, IPI specifies whether the

element is to be internally pressurized or not. The following table specifies

the properties of all ten elements in this example problem.

I = 1 to NN NN = 10 in this example

I TYPE (I) IPl(I) IPLT1(I) NI(I) IMOTl(I)

1 +2 -1 1 -3
1 +2 -1 1 -3
1 +2 -1 1 -3

1 +2 -1 1 -3

1 +2 -1 1 -3

1 +2 +1 1 +3

1 +2 +1 1 +3

2<- 1 +2 +1 1 +3
1 +2 +1 1 +3

1 +2 +1 1 +3

1 +2 +1 1 +3

6..
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For elements having similar geometry and stiffness properties, we can

repeatedly run program TYPEL to obtain the results tabulated below. Now

during the iterative procedure in program LEARN, given the end moment value,

we can by interpolation of the array A(I,J) obtain the corresponding end

deflections, radius of curvature and the other items in the table below.

Array A(I,J) I = 1 to 10

4

J = 1 to 7

End Radius of Length of Radius of
Moment Curvature Hi HDIS VDIS Element LN Element R1
(lb-in) p (in) (in) (in) (in) (in) (in)

1.02 5.3979 0.749255x10-2  0.0455 0.3663 2.0 0.525

1.265 4.3537 0.749259x10-2  0.0696 0.4514 2.0 0.525

1.705 3.2391 0.749247x10-2  0.1247 0.5981 2.0 0.525

1.915 2.8904 0.74924x10-2  0.1558 0.6648 2.0 0.525

2.2799 2.4409 0.749228x10-2  0.2164 0.7745 2.0 0.525

2.4085 2.3165 0.749221x10 2  0.2394 0.8111 2.0 0.525

2.634 2.130 0.7492x10 2  0.2812 0.8702 2.0 0.525

3.159 1.807 0.74916xi0-2  0.3839 0.9982 2.0 0.525

3.798 1.549 0.7491xi0-2  0.5109 1.121 2.0 0.525

4.587 1.346 0.7489xi0-2  0.6592 1.232 2.0 0.525

.
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The numerical results are summarized as follows.

-~Element No. Total End Moment Element
to be Applied (lb in) Pressure (psi)

1 0.181 x 102 262.33

2 0.173 x 102 214.38

3 0.149 x 102 168.54

4 0.114 x 102 129.U6

50.721 x 1198.86

-~6 0.133 x 101 79.76

7 0.502 x 101 76.24

8 0.792 x 10 62.94

9 0.792 x 101 41.96

10 0.792 x 1U1 20.98

It is to be noted that elements 8, 9 and 10 have identical end

moments. As the exact load distribution is not known, these elements are

over-pressurized so that they coil around and grip the load more tightly than

is required for lifting. The pressure pi in the i-th element whose end moment

is Mi was calculated from the following recursion relationships.

Mi = (pi - pi+1hwR2 2(R1 + Hj)

It is observed that the pressures in the respective elements are higher for

* the ones closer to the support.

The elements in the sample problem were identical but if the am

consists of elements such that the cross-sectional area of elements decreases

successively as they move away from the support (element 1 is attached to the

support) then there would be no drastic decrease in pressure between

successive elements.
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There are several possible extensions of this research. For instance,

the programming efficiency can be considerably improved if the program is

'.1l rewritten in Pascal which offers the facility of tree type of data structure

-* and dynamic storage. By implementing a tree type of datastructure searching

and insertion of data is greatly simplified. Also, the mathematical model for

plane motion as discussed here can be generalized to include out-of-plane

manipulations. This can be done by the addition of torsion elements [6] at

-,. the base of element one. One torsion element can move the arm ±1800 out of

the plane whereas another torsion element can move the arm +900 in the plane.

By judiciously pressurizing these torsion elements, the robotic arm can have a

work space consisting of volume of revolutions in each of the four quadrants.

-. 1

.\.
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III. LINEAR ANALYSIS OF UNIFORMLY STRESSED,
ORTHOTROPIC CYLINDRICAL SHELLS

ABSTRACT

Within the framework of classical elasticity, the nonbuckled deformations

are calculated for orthotropic, right circular, thin-walled cylinders under

uniform load conditions. The principal direction of orthotropy follows

parallel constant angle helices. Nondimensional system parameters involving

four material constants and three loading conditions (internal pressure,

longitudinal load and pure torque) are identified. Through parametric studies

deformation patterns are calculated that are unique to orthotropy. Numerical

examples illustrate that the proper selection of cylinder orthotropy can lead

to designs with optimal deformations or load-carrying capacity. Results may

be used for the design of robotic actuators driven by internal pressure.

I,g
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INTRODUCTION

Improvement in the mechanical performance of cylindrical or nearly

cylindrical shell-type structures may be achieved by adding reinforcement or

by making small modifications in the basic structural geometry. For instance,

the high pressure capacity of fire hoses is due to the reinforcing effect of

the helical fibers in the rubber walls. In other cases, the buckling

resistance to longitudinal loading of thin-walled cylindrical columns can be

greatly improved by the use of a fluted design, or a periodic variation of the

radius around the circumference. On the other hand, there are cases where

high deformations are desirable as, for instance, in cylindrical bellows used

as pipeline expansion joints. Here, length changes of up to 100 percent may

be achieved by the use of axisymmetric, periodic corrugations along the length

of a basic cylindrical shape [1]. Thus, the most flexible directions of the

bellows and the thin-walled fluted column are orthogonal.

The purpose of this paper is to present a unified continuum model of such

thin-walled, cylindrical shells using directional material properties. Such

continuum models are especially efficient for calculating overall, nonbuck-
ling, elastic deformations for fiber-reinforced cylinders [2] and for uniform-

ly loaded, anisotropic, cylindrical shells [3,4]. In the present study,

classical elasticity is employed to predict the nonbuckled deformations for

uniform, orthotropic right circular cylinders with thin walls, subjected to

three types of uniform loads: a torque T effecting rotation about the longi-

tudinal axis, a longitudinal load P, and an internal pressure p. Strains

along the geometric axes of symmetry are presented as functions of nondimen-

slonal system parameters involving these loads (applied separately and in com-

bination), the cylinder geometry, four material properties, and the constant

helix angle eo that defines the direction of maximum stiffness. See Figure 1.
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PRINCIPAL LINE OF ORTHOTROPY
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Figure 1 Definition of the orthotropic cylinder
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This continuum model may describe the overall deformation characteristics of

fiber-reinforced tubes as well as tubes with corrugations at arbitrary helix

*angles, as long as the cylindrical shape is maintained under load. Results

may be used in future designs of robotic actuators that twist (400 < eo < 80*)

or that only lengthen as for bellows (6o " 0) when subjected to internal

pressure.

* CONSTITUTIVE RELATIONSHIPS

Following the development in [5], the constitutive law for an ortho-

tropic, elastic solid that relates the six strain components to the six stress

components is given by

1 "21 v31
11 -E 22 - 2 3  11

V12  1 32 0 0 0

22 r" r_2  E= 22

13 23 33

V 1 3. V 2 3 0 0 0 CT
11 2 33

Y12  0 0 0 G 0 0 12
12 12

Y13  0 0 0 0 1 0 01313.

1* 11" 23 0 0 0 0 0 G2 °23-:
023

Equation (1) is written with respect to the principal axis (1,2,3). The 6x6

material matrix, whose elements are designated as aij, is determined by

experiments. The strains and stresses of Equation (1) are redefined using

single subscription, or
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£ 11 Cl , 22 " 2 ,  33  " 3  (2 a )

Y12 = E4 , Y13 = c5  , Y23 =e 6

Oll 01 , 022 = 02 , 033 03 2b)

012 ' 04 , 013 = 05 , 023 06

Using this notation, Equations (1) become

6
.J ao (3)

j =1

Recognizing that the total elastic energy for the orthotropic solid is

invariant with respect to the coordinate system, the elements a' of the
lj

material matrix in the (r,e,z) coordinate system can be written in terms of

ai  of the (1,2,3) coordinate system. That is

I I 6 amn qmi qnj (4)

IJ i m=1 n=1

i,j = 1,2,*..6

where qij represents the direction cosines of the (1,2,3) system with the

(r,e,z) coordinate system. As shown in Figure 1, the relationship is simply

one of rotation of the (1,2) axis to the (e,z) axis by an angle of -00 in the

plane r = constant. The values of qij for this rotation are listed in Table

1.

In the transformed coordinate system, the constitutive law is

#."

7 a (5)

which is expressed in cylindrical coordinates as follows.
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a I S

OO all a12  a13  0 0 a16  C0e

C al a a 26
zz 21 22 23 026 zz

crr a31  a32  a33  0 0 a36  rr
= (6)

S S

Yr 0 0 0 a44  a45  0 0 zr

er 0 0 0 a54  a55  0 aer

a I I I

"ez a61  a62  a63  0 0 a66  aez

For the types of uniform loading considered here, the shear stresses aer and

Ozr may be approximated as zero, an assumption consistent with the elastic

theory of thin-walled cylinders [6]. From Equation (6), the remaining

stress-strain relations are thus

I I I I

ee a1 12 13 16 aee
* I I I

C21 a22 a23 a26 azz
(7)

rr a31 a32 a33 a36 rr

I I I I

ez a61 62 63 66 aez

The elements a of the material matrix of Equation (7) are calculated

from Equation (4) with aij and qij given by Equation (1) and Table 1,

respectively. The results are as follows*.

*Note that in reference [5] is interpreted as -eo in Equations
(8)-(17). Also, Equation (9) reflects a correction of the results reported in
[5].
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Table 1. Elements of qij for axis rotation

j1 2 3 4 5 6

1 cos 2e0  sin 2eo  0 0 0 sin2e o
-,4

2 0 0 0 0 0 -sin2eo

3 0 0 1 0 0 0

4 0 0 0 cose o  -sine o  0

5 0 0 0 sineo  cose o  0

1 1
6 - sin~eo 0 sin~eo0 0 0 0 cos2e o0
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:%qii I + (1 2v1 2 2 1

a E.I coS
4 o 12)2 e Cos2  + E L sin 4 6 (8)

= G12 -l n0 0 22  0

i 4  1 2v1  2 2 1 4
sin22 00 + - 2)sin0oS2 + - cos (9)a =; 2  - E o

a 1 1(0a33  = f3( 
0

1 1 2v 1 2  1 2 2 v12

a ; _1  "2  _ = cgsi " - in 60 (1)2 1 E11  E 22  E 11  121

' 23 2 - 31 sin 20

v23 0 ~ 0

a a;1 = - sin 2e - 31 co (13), 13 31 0 T33 0 (3

4 0= 4 12

a, + +)sin= e cos e +_1 (14)
a66 Ell 122  Ell G 12 0 o G12

a 2 2 2  1 2v 12a16 a 1  [1 co s0 0- sin 00 -
11 22 12 11

..(Cos 2 060 - sin 2 0 ) ]sine0 cose 0  (15)

2  
2  2 2 1 2v12

(cos. e sin - 2 2 o oa;6 22 12 11

*(Cos2 0 - sin 2 0) ]sino 0cose0  (16)

a"=a 2v31 2v23 (17
36 = ()sin0 0cos5017

+ E22

EVALUATION OF MATERIAL CONSTANTS

There are seven material constants that appear in Equations (8)-(17),

namely Ell, E22 , E33 , v12, v23, v31 and G12. It is necessary to determine how
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V,
these constants are related to each other and then to devise meaningful tests

to measure them. To insure that the strain energy is a single valued function

of the strain displacements, the material matrix of Equation (1) must be

symmetric. That is

Ell v2 1 = E22 v12  (18)

E22 v32 = E33 v23  (19)

E33 v13 = Ell v31 (20)

Consider a tensile test for which the specimen's longitudinal axis

coincides with the longitudinal or z-axis of an orthotropic cylinder, given

that eo = 90 deg. For a uniform, applied stress azz where ee - 0rr = aez = 0,

it follows from Equations (7)-(20) that the strains are

V12  21 (21)
e' e 17 °zz I' zz

00 22

S1 - (22)

v31  13
err T_- zz -

0zz (23)

Equation (22) shows that E11 is the equivalent of Young's modulus along the 1

axis. Now suppose that for 0 = 90 deg the orthotropic tube corresponds to a

fluted, thin-walled cylindrical column of a homogeneous, isotropic material

with Young's modulus E and Poisson's ratio v. This fluted column test specimen

thus exhibits the same stress-strain behavior of the isotropic material in both

the 1 (or z) direction and in the 3 (or r) direction. The following

definitions of the orthotropic constants are consistent with Equations

(21)-(23).

E - Ell - E33  (24)

v " v31  V13  v12 (25)
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Consider a second tensile test for which the specimen's longitudinal axis

again corresponds with the z-axis of an orthotropic cylinder, but now let eo =

0 deg. Again, the only nonzero stress is the applied, uniform tensile stress

zz. It follows from Equations (7)-(20), (24) and (25) that

- V 21 - (26)

o E ""zz = - ' zz
1-2

-Z = E22  (27)

• v23 - V32 -
rr 722  zz = "T zz (28)

4,-..2

Observing Equation (27), it is seen that the modulus of elasticity in the 2 (or

z) direction is E22 . Now let

E E22  (29)
-", V V(0

VI,=V 21  v23 (30)

which define respectively the effective Young's modulus and Poisson's ratio for

a bellows, consistent with the assumption that 066 = arr in this tensile test.

It follows, using Equations (24), (25), (29), (30), that Equations (18)-(20)

are satisfied if

32 , Ev' = E'v (31)

In a third test, a pure shear stress aez is applied to an orthotropic

cylinder for which eo  0. This corresponds to the application of a pure

torque that rotates a bellows about its longitudinal axis. As for the previous

two tests, the cylinder is orthotropic only because of its corrugations, since

".:: it is constructed of an isotropic material with elastic constants E, v and

shear modulus G. Torsion tests on such a bellows have shown that [8]

Iez = (32)

which indicates that the rotation and shearing stress are those predicted by
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the theory of thin-walled tubes without corrugations. When Equation (32) is

compared with the stress-strain law given by Equations (7)-(17) in this case,

it is seen that

G = G12 (33)

In summary, there are four independent material constants needed to

describe the stress-strain behavior of a cylinder with corrugated walls made of

an isotropic material, but modeled as an orthotropic, smooth-walled tube. The

stiffest direction (modulus E) follows the corrugation lines forming constant

angle helices. Orthogonal to the helices is the weakest direction (modulus

E). The independent material constants are E, E', G and v. Given uniform

stresses ale, Ozz, Orr, and cez, the uniform strains are calculated from

Equation (7). Using Equations (24), (25), (29-31) and (33), Equations (8)-(17)

give the elements of the material matrix as follows.

S coS4  1 2v 2 2 1 4
a, = e 0 + - ~ -Esin e0cos 0 + sin (34)

a 22 = sin46o + (-d - 2 -)sin 2 ocos 2 o + 1r cos 4 e (35)

* 1
a33  E (36).,:.: 33 T

a.,= - ( + + - cs e V (37)::a12 a 21 + + 0G0)

I I V
23 =a 32  (38)

a a, v (39)

a- 4 8+ 4v -)sin 2  " 2 + (40)
66 - COS o  G+(40

aj aa~ *~ 2 2 2~ co 2e - 1 2v
a a si e o+ Cos e

.(cos 2 o- sineo)]sineocose o  (41)
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* 2 2 2 2 1 2v

Cs6+ sn e +
a26 = a62  [- + si + - "

• (cos 2 eo0 - sin 2 eo)]sineocose o  (42)
I I

a36 =a6 3 = 0 (43)

These results can be used to calculate the strains, displacements and rotations

of the cylinder for the special cases of loading discussed below.

EQUILIBRIUM AND COMPATIBILITY

As shown in Figure 1, the thin-walled cylinder is subjected to three types

of uniform loads: an internal pressure p, a longitudinal load P centered on

the z-axis, and a pure torque T causing rotation about the z-axis. Since there

are no boundary or edge constraints, the resulting uniform stresses may be

derived using equilibrium conditions and elementary methods. In terms of the

mean radius Ro and shell thickness to, which are essentially constant during

loading, the stresses are:

, PRo (44)
88 to

P +PRo (45)

~y. ee *2R t It-. 45
0 0 0

e T 2R 2t (46)

Consistent with the thin-wall assumption, the radial stress is negligible, or

Orr - 0 [6].

Since these stresses and their corresponding strains, as given by

Equations (7) and (34-43), are all uniform, they are all independent of the

cylindrical coordinates (r,8,z). Thus the 81 St. Venant strain compatibility

conditions are automatically satisfied [7].
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STRAIN-DISPLACEMENT RELATIONS

The general strain-displacement equations in polar-cylindrical coordinates

given in [7] are simplified as follows to express the condition that there are

no variations in displacement in the e or circumferential direction.

au
r (e '-(47) .

rr ar47

E au+ Ur Ur

Be r ae

'S au
z (49) 5.

Y au +  - (50)ez 4T r Te z

. Here, Ur, Ue, and Uz are respectively the displacements in the r, e and z

directions.

Following a procedure in [3], these relationships can be integrated in

." terms of three functions fl(r,z), f2 (z) and f3(z) which are to be determined.

'. From Equation (47):

Ur = r err + fl(r,z) (51)

It follows from Equations (48) and (51) that:

fl(r,z) = r(cee - Err) (52)

From the last two equations, then,

Ur = r cee = Rocee (53)

where r - Ro for a thin-walled cylinder.

From Equation (49):

Uz = z z + f2(z) (54)

where the second function of integration, f2(z), is independent of r since the
cylinder wall is very thin and any variations across this thickness have no

significant effect on the longitudinal deformation. Further, by imposing the
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condition of no rigid body motion, where Uz = 0 at z = 0, and noting that Uz

can be at most a linear function of z, then it is apparent that f2(z) = 0.

Thus Equation (54) thus yields the position = z + Uz of a material point

originally at point z measured from one end of the cylinder, or

+ (1 + £zz)Z (55)

The circumferential displacement is obtained by integrating Equation (50)

and then using Equation (55). That is

U6 = Yz + f3 (z) (56)

Here the function of integration is again independent of r, which is consistent

with the thin-wall assumption. By imposing the condition of no rigid body

rotation where U6 = O at z =0 , and noting that U6 can at most be a linear

function in z, it is evident that f3(z) 0 0. Thus U = Yz.

In summary, the radial, circumferential and longitudinal displacements are

given in terms of the strains, the mean radius, and the z-coordinate only, or

Ur = Ro cee ; U = (1 + ezz)ZYez ; Uz = z czz (57)

It is noted that Ue and Uz are the same displacements assumed [2) for the solid

orthotropic cylinder rotating about the z-axis.

A further displacement of practical interest is the angle of rotation f

for a cross section of the cylinder at the coordinate z. Within the limits of

linear theory, * = Ue/R o. Thus, from Equation (57):

= - (1 + czz)Yez (58)

0

PARAMETRIC STUDIES

All of the calculations for the parametric studies that follow are based

on Equation (7), the stresses of Equations (44)-(46), and the elements of the

material matrix given by Equations (34)-(43). The specific values of E/G = 3
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and v - 0.5 were chosen since they are characteristic of the polymeric and

rubber-like materials to be used in future applications.

Effects of Loading without Constraint. In the first series of parametric

studies, the separate effects of each loading, p, P and T on the homogeneous

strains Yez and £zz were investigated for an unconstrained cylinder. The goal

was to determine peak strains as a function of the appropriate nondimensional

system parameters.

The three nondimensional parameters involving the shear strain Yez are

defined by the ordinates of Figures 2 through 4, in which the only nonzero load

is p, P and T, respectively. For the isotropic case (E/E' = 1), all three of

- these figures show no shear strain variations with the helix angle e., a result

:. that could be anticipated. For p loading only (Fig-ire 2) and for P loading

I only (Figure 3) the negative ordinates indicate that Yez is negative, or that

the cylinder "unwinds" because of orthotropy (E/E' > 1). For T loading only

(Figure 4), the positive ordinate indicates that the cylinder "winds up" if T

.: is applied as shown in Figure 1. The interesting result is that the peak value

of each respective shear strain parameter occurs at a distinctly different

value of eo . That is:

E to Yez
peak (- 0 ez) occurs for eo  53 degpRo

0

E to Ro  z

peak ( p ) occurs for 0= 30 deg

2

peak TE 0  ye occurs for o0 45 deg

For each load type, there is no shift in these respective values of Bo for

1 < E/E' 4 100.
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Figure 2 Unrestrained twisting due to internal pressure
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The three nondimensional parameters involving the longitudinal strain Ezz

are defined by the ordinates of Figures 5, 6 and 3 (right ordinate), given that

p, P and T are the only nonzero loads, respectively. For the isotropic case

(E/E' = 1), ezz is zero for two load cases: with the p load as a direct

consequence of choosing v as 0.5, and with the T load as expected from

elementary solutions. With orthotropy, the peak values of the longitudinal

strain parameters are as follows:

Et e
peak ( p R occurs for 80 = 0

peak E occurs for e = 0

E to R 
2 e

peak ( O ZZz) occurs for 6o = 30 deg

From Figures 5 and 6 it is observed that the values of these parameters are

only somewhat depressed for 0 < 60 ( 15 deg, but that this depression increases

more rapidly as E/E' increases. From Figure 3 (right ordinate) the

longitudinal strain is seen to be negative, indicating the tendency of the

orthotropic cylinder to shorten as it winds up under a positive torsion load.

Effects of Radial and End Constraint. While the studies above dealt with

Z strain behavior for loadings applied one at a time, one can imagine a multitude

of practical cases involving combined loads. Consider now one such case where

an orthotropic cylinder is required to operate in close proximity with other

mechanical parts. To avoid longitudinal and radial or circumferential

qr
expansions when pressurized, suppose that the unloaded orthotropic cylinder

just fits within the confines of a rigid, closed-end tube. Under loading,

then:

Czz = ee- 0 (59)
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The confining tube has frictionless walls where its design allows for the

application of a torque T to the orthotropic cylinder. The confining tube does

not inhibit torsion. From Equations (7) and (44-46), the two constraints of

AEquation (59) become:

PRo , P a T(a +-a) (60)
12 2 2 pto 22 2iRt+ 26 2wR_n R.2to0 00

(a + -o+a - +aT(1l 2 a12 ) to 12 27rr t 16 R2 0 (61)

The compatible equation relating the loadings p and T is found by eliminating P

between Equations (60) and (61), or

I I I I

T 12 12 11 a22
2w~)= (62)

pR a16 a22 a 12 a26

The pressure-longitudinal load parameter is found by eliminating T between

Equations (60) and (61). In terms of S of Equation (62), this is

P a 12 + 1 + a (63)

- 2w ( 7 (63
pR_0 a22 a22

The results of Equations (62) and (63) are shown in Figures 7 and 8.

Figure 7 shows that the pressure-torque parameter, the inverse of Equation

(62), has a peak value at 60 = 50 deg for all E/E' > 1. For an imposed torque,

this gives the maximum required cylinder pressure for full cylinder

confinement. Figure 8 (the right ordinate) shows that the end load-pressure

LI parameter defined by Equation (63) is independent of E/E' if that ratio exceeds

unity. For a fixed pressure level p, the compatible end load P always

decreases with 6o to maintain full cylinder confinement. It is noted that the

Isotropic cylinder is not shown in Figure 8 (the right ordinate) since the only
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way that full cylinder confinement can be met for E/E' = 1 is that P - p - 0.

For this latter set of conditions, it is recalled that a nonzero value for T

always implies full cylinder confinement; that is, Equation (59) is satisfied.

Using the results of Equations (62) and (63) it is possible to calculate

the helix angle that will minimize the rotation # (minimize Yez) at a given

pressure level. The conclusion in this case, based on the results of Figure 8,

left ordinate, is that eo = 53 deg will produce a minimum * for all E/E' > 1.

Effects of Torsional and End Constraint. Consider now the special case

where the orthotropic cylinder is fully restrained from rotation and also from

longitudinal displacement. That is

Yez M Czz M 0 (64)

With Equations (7) and (34)-(46) these two constraint equations are:

(a' + .' 0 ° P ' = 0 (65)12 2 22) -o + a22 2Rot +a 26 2R2t

(a 1 PR o  , P a T 0 (66)16 2 a26) t- + a26wR0 + a6 6 21R 2 (
0 00~ 2w 0

By eliminating P between Equations (65) and (66), the torque-pressure parameter

is deduced as:
"' I I I I

T a 16 a22  a 26 a12) S(*-2v 2)s (67)
p R 0 a 2 a6 6  a2 6 a26

The compatible end load-pressure parameter is found by eliminating T between

the same two equations. In terms of S' .of Equation (67), this is

a a(a ! 2  1 a26 S'
--2v +) (68)

0  22 22

The results of these studies are shown in Figures 9 and 10. For a

constant pressure p and a fixed modulus ratio E/E', it is observed that both
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the applied torque T and end load P reach peaks that are highly dependent on

the helix angle. For instance, if the orthotropic cylinder were to be used as

an efficient torque-exerting device, we would pick 60 - 60 deg if E/E' - 2, but

would pick 00 - 80 deg if E/E' - 50. However, if this cylinder were to be used

as a longitudinal or end loading device, we would choose 60 - 62 deg for E/E' =

50. These rtfsults are contingent, of course, on the requirement that all

rotations and longitudinal motions be completely supressed.

There are three observations for this case where eo - 90 deg and p > 0.

First, no end load is required for the longitudinal strain to vanish, which is

a direct consequence of having chosen v a 0.5. Second, no torque is required

and yez is automatically zero, a result that agrees with intuition. Third, a

straightforward calculation of the circumferential strain reveals that ceo

reaches its peak value when eo  90 deg, for all E/E' > 1.

DESIGN EXAMPLES

The following examples show the utility of the above parametric studies in

the design of special purpose configurations. The finite length cylinders are

assumed to be fitted with end caps that have negligible radial stiffness so

that homogeneous stresses are maintained throughout. The material and

geometric properties common to all three design examples discussed below are as

follows.

E - 1.5 x 107 N/m2  E' - 1.5 x 106 N/m2 ,

G w 5 x 106 N/m2  , v 0.5,

to  1.5m , Ro -15 mm , mm.

In the first design, 0 1 30 deg and the maximum allowable internal

pressure is p - 1.9 x 105 N/m2 . What is the maximum torque T that such a

cylinder can exert to loosen a bolt, for instance? With E/E' - 10, the value
'.
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of the shear strain-pressure parameter for unconstrained rotation (T - 0) is

given in Figure 2 as -4.87, from which Yet - -0.62 rad. The maximum torque

capacity is then the value of T for which yez - +0.62 rad., corresponding to

complete supression of rotation. With this shear strain and the ordinate of

-Sigure 4, r-vh nicth-e shear strain-torque parameter is 1.55 at eo - 30 deg

and E/E' - 10, the maximum possible torque is thus calculated as T - 2.02 N-m.

For this first design, what is the length change in the cylinder for this

maximum torque condition? From Figure 5, the longitudinal strain-pressure

parameter is 4.2, for which czz - 0.53 for unconstrained rotation (T - 0). For

fully constrained rotation (yez - 0) let T - 2.02 N-m. The corresponding value

of longitudinal strain from the right ordinate of Figure 3 is calculated, or

- -0.37. By superposition, the net result is ezz - 0.16, the length change

of the cylinder is Uza 8 mm and the final cylinder length is 9 58 mm, which

are found from Equations (57) and (55) respectively for z a Lo 50 mm.

In the second design, the maximum allowable internal pressure is again

p - 1.9 x 105 N/m2 . What value of 0 will produce the maximum end load P? The

procedure is to allow the cylinder to expand freely in the longitudinal

direction with a strain ezz compatible with Figure 5; and then for the same 60

to apply a compressive load P compatible with Figure 6 where this load

completely nullifies the previous strain Ezz" This is equivalent to finding

the value of 80 that maximizes the ratio Y5/Y6 , or the ratio of ordinates of

these two respective Figures. In these terms, the peak compressive value of P

is given by

P C .) 2 341 N (69)

6 max

corresponding to 00 a 58 deg.
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In the third design, the applied torque and the longitudinal strain are

zero. What value of 00 will produce the maximum cylinder rotation at an

arbitrary internal pressure? In this case, Yez is the sum of two components:

that due to the internal pressure (Figure 2) and that due to the longitudinal

load (Figure 3, left ordinate). In terms of the ordinates Y2 and Y3 of these

respective Figures, as well as the ordinates Y5 and Y6 , the total shear strain

reduces to:

Y3 Y5 p R(-Y +  - ) 0 (70)

*In Equation (70), the value of P was eliminated from Y3 by the multiple Y5/Y6.

Using a trial and error procedure, the peak value of the bracket term in

Equation (70) was calculated as -4.94, for which 0o = 67 deg. If the internal

pressure is p - 3.8 x 104 N/m2 , then the corresponding shear strain is Yez

-0.125 rad; and the rotational displacement and angle of rotation at z = Lot

calculated from Equations (57) and (58), are U8 - -6.25 nm and #.- -0.42 rad,

*respectively.

SUMMARY AND CONCLUSIONS

Within the limits of linear theory, the deformation behavior of uniformly

stressed, orthotropic cylindrical shells is described by several nondimensional

parameters involving four independent material constants E, E', G, v, and three

loads: internal pressure, longitudinal load and pure torque. It is assumed

that buckling is absent and that the cylinder is sufficiently constrained so

*that the cylindrical shape is always maintained. As shown in Figure 1, the

principal directions of orthotropy follow constant angle helices. The more

important findings of the parametric studies, unique to this type of

orthotropy, are summarized as follows.
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1. Longitudinal loading P and/or internal pressure p effects twisting

about the longitudinal axis.

2. For P loading only, maximum twisting deformation occurs for an

orthotropy angle of eo - 30 deg; but for p loading only, this occurs

when eo - 53 deg.

3. For a pure torque T, maximum twisting deformation occurs when e0 = 45

deg.

4. A pure torque T produces a change in cylinder length, which is not the

case for isotropic cylinders.

5. The cylindrical strains YOz, coo and ezz are all amplified for a given

set of loads (p, P, T) as the magnitude of the orthotropy increases,

that is, as E/E' increases, given that the geometry and other material

constants remain fixed.

6. The maximum longitudinal strain czz for P and p loading occurs for eo

=; but czz is maximum for T loading when 60 = 30 deg.

7. The design examples show that the proper selection of cylinder

orthotropy (0o and E/E') can lead to optimal deformations or

load-carrying capacity. Such designs, however, are highly sensitive

to both the type of loading and strain constraint conditions .

The results of these studies are important to the design of versatile and

efficient pressure-controlled actuators made of rubber-like materials that can

sustain relatively high strains. Orthotropy may be achieved by corrugations of

the wall. Robotics is a logical field of application for such actuators.
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NOMENCLATURE

E Young's modulus in strong direction of orthotropy

E Young's modulus in weak direction of orthotropy

Eit Modulus of elasticity in i direction where i is one of the

orthotropic axes, i - 1,2,3

G Shear modulus of an isotropic material with Young's modulus E

Gij Shear modulus in i-j plane, where I and j are orthotropic axes,
(ij) - 1,2,3, 1 $ j

P Longitudinal load

Ro  Mean radius of cylinder

T Applied end torque

Yk Value of ordinate for Figure k, k - 2,3,...6

aij elastic constants in orthotropic coordinate system
(ij) - 1,2,.6

aij  Elastic constants in cylinder coordinate system
ij(i~j) - 12.

f1 (r,z) Function of integration

f2 (z), f3(z) Functions of integration

, o  Length of cylinder

p Internal pressure

qtj Direction cosine terms relating the (1,2,3) axis to (r,8,z)

axis, (i,j) - 1,2,...6

r,e,z Cylindrical coordinates

to Wall thickness

Ur Radial displacement

Uz  Longitudinal displacement

Ue Circumferential displacement

C Longitudinal coordinate of material point where 9 = z at
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yij Shear strains in i-j plane in orthotropic coordinate system,
(i,i) - 1,2,3, i *j

Tzr Shear strain in z-r plane

-Shear strain in 6-r plane

yez Shear strain in e-z plane

€i  Strains in orthotropic coordinate system, single index
• ,notation i-1,...6

S€iStrains in cylinder coordinate system, single index notation

Cii Strains in orthotropic coordinate system, double index

notation i = 1,2,3

err Strain in radial direction

F-zz Strain in longitudinal direction

Fee Strain in circumferential direction

eo  Angle between strong axis of orthotropy and circumferential
direction on cylinder

vPoisson's ratio of isotropic material with Young's modulus E

vlj Ratio of extensional strain in I direction to extensional
strain in j direction for orthotropic coordinate system,
(ij) = 1,2,3, i * j

0I  Stresses in orthotropic coordinate system, 1=1,2,...6

01 Stresses in cylinder coordinate system, i -1,2,.6

Olj Stresses in orthotropic coordinate system, (i,j) = 1,2,3

Orr Normal stress in radial direction

Ozr Shear stress in z-r plane

Ozz Normal stress in longitudinal direction

Oer Shear stress in 6-r plane

Oez Shear stress in 8-z plane

Oee Normal stress in circumferential direction

* Angle of rotation of cross-section
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APPENDIX A

COMPUTATION OF NEUTRAL AXIS
Ai

The iteration steps to compute the position of the neutral axis of the

composite section of an element, given an end moment Ma, were briefly outlined

in Chapter 2. The iteration steps including various formulae derivations, are

now discussed in detail.

To set up the force equilibrium equation for the composite section it

is needed to integrate over elemental areas across the section. For the

cylindrical part as shown in Figure 2a, the area of elemental steps are as

follows.

area of strip ABCD is 2 Ar dy

area of strip EFGH isfAjA dy -fA dy,

where

Arl = R1
2 - (Ri - y + H1)

2  (A.1)

Ar2 = R2
2 - (Ri - y + H1)

2  (A.2)

The iteration steps are

a. Choose an initial value of H1 to fix the position of the neutral

axis.

b. After the neutral axis position is chosen the radius of curvature

P of the deflected element is computed. Due to applied end moment, the part

of the section above the neutral axis will be in tension, whereas below the
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neutral axis the section will be in compression. Refer to Figures 2a dnd 2c.

For the linear reinforcement material the stress strain relationship is

a = Ee (A.3)

and strain curvature relationship is

. £ = y/p (A.4)

From Equations (A.3) and (A.4) we get

a = E y/p (A.5)

For the nonlinear synthetic material the stress strain relationship is

a = Ae + Bel/n (A.6)

From Equations (A.4) and (A.6) we get

';" 1/na-.
A(Y) + B Y)(A.7)

Now

F = Force f adA (A.8)
A

From Equations (A.5) and (A.8), the compressive force in the lower part of the

reinforcement (below the neutral axis) is

0 -Eb(H - H)'
F = f E - b dy = (A.9)

H-H1  p 2p

Similarly the tensile force in the upper part of the reinforcement is

2H1  EB H
F E Xb dy -(A.10)0i o

From Equations (A.7) and (A.8), the tensile force in the cylindrical part is

p p

where
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R1 -R2 H1  RI R2+H1

-Y 2AC f yf T-,dy+If y(f-f dy
H1  R1-R2+H1

2R1+HI
+ I Y /A,- dy] (A.12)

RI1+R 2+H I

and

R -R+H RI+R2+H

I= 2[f y1n - I dy + f y1n2{.1An - r1ry dy
H1  R1-R2+H1

L;,'c2R 1+H1
1/n dy] (A.13)

R1 +R2 +HI

-y and I are evaluated using numerical integration techniques.

To have force equilibrium we know that the sum of compressive and

tensile forces is equal to zero. Thus from Equations (A.9), (A.10) and (A.11)

we get

Eb(H- Eb H1  1/n 0
2p + 2p p ()

Eb(H 2 - 2HH1 ) - 2y B(1)1/n I

2p p

Eb(H 2-2HHI ) - 2y n

2BI = (p)

Eb(H 2-2HH) - 2 n -

p2B1

n
r 2BI 1 -n7L- Eb(H2.2HHI)2y (A.14)
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cn For the computed radius of curvature p and chosen position of

neutral axis the moment of resistance of the section Mc is evaluated.

Moment of resistance - f ay dA (A.15)

A

Using Equations (A.5) and (A.15) the moment resisted by the reinforcement is

Mr 2 E 0o
Mr 1y Pbdy + f y2  bdy

o HI-H

Mr =-() (A.16)

where

= H1 (H - H) (A.17)

Using Equations (A.7) and (A.15) the moment resisted by the nonlinear

cylindrical part is

M ( ) + ()ln n (A.18)

where

R,-R+H R+R+H
8 2A~f 2Ar 1 2  dy + jf 2 1

H1  R 1-R2+H1

2-R I+HI
Sy7Ar dy) (A.19)
R1 +R2+H1

and

R-R,+H n+1 RI+R+H n+
n = 2B[ 1  2 1 y n JI --dy +f 2 1 y n {jr- .  dy

+1

2R1+H1  n+1 (.0
~1 y nJ~dy
R + H 1  y , dy] (A.20)

R +R2+H1J1"2"1

The total moment resisted by the section
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Mc Mr + Mn

From Equations (A.16) and (A.18) we obtain
S 1 + (1 + 11n (A21)

d. If the following inequality holds for a specified tolerance limit

M -M
a <

then the iterations stop. Otherwise a new position of neutral axis is chosen

and steps (b) to (d) are repeated.

:410
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APPENDIX B.- PROGRAM LISTINGS

PROGRAM TYPEL

1. // Os
2. 1/EXEC FTVCG

S* C................... ..............................................................

6. ............ RE A L-9.. Hl H,,N8. I M. A.i. B2 . I.R2.RHO.t41N.ALPHA.
A. . ~ 7. IUETA.NETA.KSrTA.GAMA.Ni .M2,IJ.Z.NI .L.MM.INTGRL.

a. ;t..................0.

10. 10 FOWMAT(F3.1.F4.1,74.2F6.3.F4.1.F5.IF5.I.ES.2.ES.1)
11. WRITE (3.,10 .1..IR.LA.2N. ....--

12. C
13. C LOOP TO VARY THE APPLIED MOMENT
U4. C. ........... ............

15. 00 20 Zai.X
if. WRITE(3.63)1
17. ____63 FORMAT(IM *1Iw.L12) .. . ...

19. 000FOO()S 0.
2S. 0.0.00056

21. I4I'0.501
22. 70 m41uml-ce4

23.! .~......

24. u0g
25. 60 TO 9O
26. 80 HiwHl*RoH_____
27. 0060.5
23. RUR0O.9S
29. _ 0 F(iA.0000)O.(HICE TO 92
20. IA
31. Z-INTGAL(HIRi.R2.Nl)
32 . =.0:O
3. N161.0
34. CAN& *!NTGRL(41.Rl.R2.NI)

35. 3ETAu2.0OAI*GEA-

*3. BETA-tNTanL(wi.RI.R2.N1)
41. . PETAs2 .0*A2'NETh

45. IWj '67WHWU

46. M2URMIN*OALPI4A4RHI~w'STA.RHIN**( I.O/N)'NETA
47. UmOA8SSUMl-M2)/MI) -.-. . ...

49. VRITE(3.34) M2.Hl.mI
.,6%50. 34 FORMAT(IN .M2w'.El$.7 'II.E15.7.WIl. EtIS. 7)

SI........~ 6 T - ... ?....

52. s0 To iO*
53. 40 KSI7AwRHIN*e(i.O/N)'NETA
54. .(M-ST)/LPA.ETA
55. VOISw(l.O-DCOS(LvMM))/MM
54. . ....(L.. .)/.................

so. 20 FORMAT(OM .5X.Ht'.$tOX.-RO.8X.'MOMENT'.SX.'VOXS'.7X.-H0IS')

............... ...... WRIT.E(A.13S) ... .2VOS~I ~ .....

Z.4



60 19 F OR MA 7( gH 5 E 15.8......... 0 ' ............... e ....... .."..'..'.... ......... "... ..... ................................................. ...................... ............................ ... ............................61. S TO 20

2 . * . 12 wR1TE(3.95). . . ....................................

64. C ERROR MESSAGE
s. C

- U .... ..... O T .........- ii"" 'f'iN * t DIS U iAiLF O Ei"E" STRUCTUE' ........ ................
67. 20 CONTINUE

6. STOP -
69. ENO

Tro. C
71. C FUNCTION USED TO. CALL INTEGRATION ROUTINE DCADRE
i2. C ................................................. .. ........................................................................................................ .......

73. DOUBLE PRECISION FUNCTION INTGRL(H1.R1.R2.NI)
74. INTEGER 1ER

76. iRi.R2.P.R3.R4.N2.NI
77. _COMORN . .R4.N.P.2... ...... .................
75. EXTERNAL F

79. N2wNI

60. R3R1
61. 3i',R2
42. H2*Hi
53. RERR'O. 000000010
94. AERRO. 000000001

65. AOH2*O. 000000001
a6. ___3R3-R4'4H2-O. 000000001
67. P - I. .5 ,- *
sob. C I ',CADRE ( FA. I.AEOR. RERR, ERROR.IZER )

09. A-0.00000001, _

90. S*R3"R4H2"O.00000000t
.1. C2-DCARE((F.A..AERR.RERR.ERROR.IER)

92. P00.5
,. 93. 40A

94. ae6

vs. C3..CARE(F.A.S.AERR.RERR.ERROR.1ER)..... .......................
6. P.I.S
17. AB+O.S00000001t

. 8. B*2*R34-H2-0.000000001

100. INTGRLwCI4-C2-C34C4

101. RETURN
102. END
103. C
104. C
1O5. DOUBLE C-REit IO 61 * V 'T l N"V'T
106. REAL'S R3.R4.N2.UNOERI.UNOER2.H2.Y.P

' ..... OTP107. COMMON R3. 4.N2.P. H2
0 '. . . . . .... "-.' ' . "0) G. .
109. UNDERI-(2"I3sY-Y"Y-H2*M2-2eH2R34'2"Y942)"0.5
10. Fm(yv'(.0/N2))GUNOERI

~112. 14 UNDER2,,(R40,~*&2oR3*Y-Y*Y-M2-H2-2,,H2eR3*2-H2-y-R3*R3)-',O.5

113. F,'*(I.O/N2)*UNDER2
1$4.17RUN
115. END
114 . -//G. SyslN 00

117. 00..0

.. ...... .. ... ............... .......... . .... ............................... ... . ...................... .......... . ...... ....................................... ............
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PROGRAM- LEARN

1. JOB I0.REGIONwi024K

....... i E .E . .....V.C... ....... . ........ .. . ...... ..... . ...... ..... ........... .... ... ...... .... .........

. C.

7. C swems
a. C

10. DIMENSION XORD(25).YORO(25)
11. COMMON XORDYORO.X5.yS..... .. . . . . .

12. ....../.11527S
13. XS.Y3
14. Y5u-X3

is6 95 FORMAT(IN .'END ROTATiONu'.E,2.A.4X.'XCOR.'.E 2.4.4X.
17........ YCR'.1..X AD E12 4.4x 'mal.12)

19. XORD(MM)BXS
20 - YORO(MN)wY% . . . . . ... . .

21. ..E..TU-RN-
22. END

24 C
25 C & SUBROUTINE FOR DATA INTERPOLATION

-26--.. C

28. SUBROUTINE DTINT(RMI.ITYPE)
29REA . .........N V- 

.-...........30. DMNINA ( 20?. B20.7~I2.7
31. COMMON /BLSCI/RNO.MI.MIS1.VIS.LN.Ri.MM.A.B
32. 1PITYPE. EQ.1) GO TO 91.................

33. I (TY PEO. 0 OT
34 45 DO 96 Iwl.MM
.35* 00 96 jai1.? . ..

36. .......I.J
37. 98 CONTINUE

39. GO T991M

LO0 00 99 Dm1.7

42. 99 CONTINUE
43. 46 IF(RM1 .EO. 0.0) GO TO 41
44. 00 16 1w1.MM

d5. IF(A3(I.1) GE. MI)GO TO.22
46. 1f CONTINUE

....47:.. WJTEA3 S DSRD OET

As. Go0TO93
so. 92 .(uI-i

5.RIF IR M.iA9 f'fA -"

53 RHuRIF*(AC1.2)-AS(K.) )'ABK.)
54 ......... HIRIF(AS(I.3)-AB(K,3))A(K3)

55. VOIS.RIF'(AS(I.5)-AB(K.5)).&AB(K,5)
56. LNAi..........................NOR 16
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......... 6 ... ... ..... o...... ..... .. .. . ... ....... ........ ... . . .... ...........

61. H9.IS0.0
62. VDIS-O.0
63. LNvABfI.6) . ...

64. R16O.O
65. 93 RETURN .~

66. END

67. C
6. C M.......k N O STARTS NO 

"
. ........................... .....................................

70 C
71. C
S72. RAL LN.RH OX2.Y2. VDJIS .HiS.SIA NG.AIR3.1.3.X3.Y3.NSHrf
73. DIMENSION XORD(25).YDRO(25).A(20.7).S(2O.7).ITYPEI(5).IPI(2o).
......7S .............. .... .......... COMMON X2 o R). (V O .Xt SmO .. ..) R O f . .. !( 0L O ( ., , ...3 ............ .............
75 CMN RYR. (0.RO2).MiI2)D(.Sd41

76 COMMON /SLK1/R'I.Hi.HDIS.VDIS.LN.RI.MM.A.U
S77...........REAO(I.ii) NN.Mm.NU*RL*.W1,g4
78. 1FONMAT(3I2.3E11.4)
79. READ(I.104) XI.VI.XF.YF
60. 104 FORMAT(4EI1.d)
.. . READ( .1 0) (ITYPE 1I " I 1P'1 ' '' IIWp ' 'NI)' OT '( i "
82 10 FORMAT(511)

.. 4. ". .. ..R A ( 1 ) .... . .. ... . ................ .....................................................- ; 4. 12 FORMAT(O[10.3)

as.* READ(1.55) N2.M2.N7.M7.MX
8.' 86 55 FORMAT(514)

0.8... .i b ... ..... .... .i t t ik i l,... . N .. ... .......... ... ... ... .. ..... . ..... .. .. ... ... .... .. .. ..... ... . ..86. RMOM(XlZ?-O. O......... . . .. . ..

30.2 CONT INUE

91 NZoNZ#I

.. ... .. . ... .... .......................................... .. .. ....I.............. ..................... .. ..... ... ......... ......... .. ... ..... . ....
93. C
94. C THE DATA FILE : READ INTO THE DATA MATRIX

95. C
.6 ........ ... C ......... READ ALL"' t ' ...... ..... ...........
97 Do 319 ]el.N2

...... .9-8........... - FRAD( E0.318) ( , . ... .................. ........... ... .......... ............................ ................... .................... **8 UEA([40.) DI1I1

too. IFID(I.I.I.I.).EO.1000.0) GO TO 320
101. 319 CONTINUE
102. C......
103. C READ IN ALL THE 'RAO'
104. 320 D0 321 1.1.N2
105. IF(D(I.1.1.1.1) [O.1000.0)"GO T "32 .....
106. 0 322 0-2.m:
IV.?0 ".. ... READ(4O ,323 ) D | J l l ! ....... ..... . ........... ...... ...

108. 323 FORMAT(EiI.4)

109, I(D(I..I..1)EO 1000.0) GO TO 321
110. 322 CONTINUE
111. 321 CONTINUE
112. C
113. C READ ALL THE 'THTA
114. 324 00 325 1I.N2
11S. G(D(i.1.1.I.1).E.1OO.) G TO 330
117. DO 326 4t2.M2
117. IF(D(I.J.I.1.1).0.10O0.)" GO TO 325
li. DO 327 R.2.N7
11i. READ(40.3261 D(1...K.1.1).
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* 120'** -- 23li FORMA jtE iI.4) .. ...... .. .. ........

121. IF(O(I.,j.s.1.I).EO 1000 0) GO TO 326
S122. 327 CONTINUE

123f -- **- 326 CiONT I NutE... .....
124. 325 CONTINUE

127 C
128.....330 DO 331 Isi.N2
129 1 F(D(I.I ... 1) -EO. 100 .0) GO TO 338
130. 00 332 Ji.2.M2
131. IF(D(I-.J.1.1.1).EO.i 100.) GO TO 331

12DO 333 K 2. N7
133 IF(D(I..J.K.1.1).EQ.1000.O) GO 7O 332

.....135 .... ........... 0 33AO40Lw.33)DM7~ c 1.....................

136: 335 FORMAT(Eii.d)
S137. IF(D(I.,J.K.L.1).EO.1000.0) GO TO 333
135 33 4 CON TINUE ..........

139. 333 CONTINUE
140. 332 CONTINUE
141.......... 33 1 CTINUE. . ...

142. C
143~. C READ ALL THE 'MOM'.

145. 339 0O 339 I&I.N2

147. ~~~ ~ G TO 3348u. . .. .
. . ......... ....... (D 1.1341.EOis0O2.OTM32
148. IF (D(I.J.1.1.1).EQ.100o.0) GO TO 339

151. DO 343 Lw2.M7
152. Z(pj;.tI.K..L.I)..1000.0) GO TO 342...

153. 00 ~344 M2M
7 154. REAO(40.345) D(I.,J.K.LM)

155. 345 FORMAT(E~I.d)

156. Iv(D(I.J..K.L.M)-E.O00.Oj GO TO 343
157 344 CONTINUE
153se* .. 343 CONTINUE
159 342 CONT-iNU............... . . .

160. 341 CONTINUE
161 339 CONTINUE ..

163. C THE DATAFILE HAS BEEN READ IN
64. C
165. 346i REWIND 40 ........ .

Ise. PE0.95
167........ES0.95
166 . . .. ......uO.95... .

169. 0O0.95
170. C
i171. -*- C TO EVALUA&TE MCUR REQUIRED TO GET fTHELOAD 00oCU INITIAL
172. C POSITION TO THE FINA. DESrRED POSITION
173. C
174. C MAIN LOOP BEGINS NOW
175. C
176. C
177. C MAXIMUM OF 25 ITERATIONS ARE ALLOWED
173. C

. ...179.. DO 564 KKw 1.25
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lei1. C
182. C THE MOMENT S APPLIED ON THE LAST THREE ELEMENTS TO INITIALLY

". re4. 00 102 j]-NZNN
. 5"........ 985 : ....................... 106.1.1

$as. UMOMalIsO(.2.2.2.10)
157. 102 CONTINUE
188. C

139 101 t10.
190. X2wO.O......... 1 .1 .: ....................... ... -Y 2 .t o -o ....... .............. ...... ... ......... .......... . ......... .... ................................ ... ..
112. MOO
M93. R3-0.O
194. H3wO.
195. Y *i .0
196. I.PCK'O
197. INCK-O ............
193. MRuO

199. NSHIFmO.0
. 200. . ........... .X.RD ) .
201. VORD(1).O.0
202. C
203. C
204. C L00P FOR FIN6ING ThE ENID COORDiNATES AN ROTATIONS bF
2C'5. C VARIOUS ELEMENTS

•. .......... .. .......... ... ........ ......... ..................... ....... ....... ...... ..... ................. ......................... ........ ................................. ..................................
207. 0 20 ImI.NN
208. ITYPEs!TYPEI(I)
209. UMIORMOM(l)

211. IZ(RMI.EQ.0.0) GO TO 86
21.2.f ............................I. . . . . .-.. . .-1.
213. 00 87
214. 66 IPw-2
215. 57 IPLT-IPLTI)
21 6. N uNi(I)
217. IMOT-lMOTI(I)
2.185 .. .................*I F (I..E .1.) GO TO 17.. .............. .......... ........
219. IF(IOIR EQ-IM0T) GO TO 17
220 IF(SI.LT.0.0) GC T0 19
221. MROUND1' " == ~ ~........ . .. .H" U[ A .X S SH V E C 0 b N . ... ..... ... ... ..... ... . ...
222. C THE NUETRAL AXIS IS SHIFTED ACCORDINGLY
223. C
224. IF(IDIR.EO.-3) G TO 21
225. IF(MQ.EO.1) NSi4F-R3'*Hk3R+Hi.
226 X2eX2*NSHIFISNISI)
227. Y2-Y2*NSHIFCOSISI)
223. NSHIFO.0O
229. C
230. C ..TO CHECK IF PRESSURIZED OR NOT .............. ..
231-- C
232. 7 (gP9 0..- 2) GO TO :3
233. X2uX2-ILN-HDIS)*DS(SI).VDIS*SIN(SI)

P,' 234. Y2-Y2-(LN-HDIS)'SIN(SI)IVDISCOS.(SI)

225. SI-SI-LN/RHO
236. IF(SI.LT.O.O) V TO 24
237. X3sX2-(RI*1)SIN(SI1)

4' 238. Y3sY2-(RI*Hi)OCCS(SI)
239. G 70 25
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2 40. 24... .... .... )...(4S . .

241. Y2.Y2-fRl.HI)o'COSt-SI)
242. 25 Mom.i
2. 43 .......... . CAL RE U T 5 . 3 Y . H . .....M.. ......J...... ........... .. .. .......
244.* R3mR

..2.4. ... ... ..5 .... ... .. .. ...... .. .......... ... ..... ... ... .. ......
246. G0 TO 20
247. 23 X2uX2*LN"COS(SI)
245........Y2rnY2-LNwSIN(SI)
249 ............. 3 X - R + t i l i...
250. Y3.Y2-(R2.I43)wCOS(SI)
251. M8041
252 ................. ...CAL...S.X.3.HOM

253. *00 TO 20

255. C WHEN REVERSE CURVATURE MOTION IS IN OPP DIRECTION
256. C
257......21 IF(MR.EO.t) NSH1F*R3*H3*Rl4H1

7259. Y2.Y2-NSHIF*COS(SI)
-260* NSHIF*0.0

261........IF I P EQ -2) 00 TO 33.......-.
262. X2.x2.(LN-HOIS)wCOS(Sl).VOISOSXN(SJ)
263........ 2aY2-(LN-OI S)*SIN(SI )-YVOI~vCOS(S )............ ...................- ......

265. IF(SI.L1.0.0) GO TO 24
2 ............ ... 2-(R14H1)SINi~~iic sf i)'*.................................................................................

265 GO TO 35
269......A X3sX2*(R1.g41)6SIN(-SI)
270 .~Y ' ~ ... .................-...

271. 25 lNM.+1
272. CALL RESULT( SI.X;2.Y.M.) . . ..

...... ......... ...R3.R i ...........
274 'H3aI41

*275' GO TO 20
276.. ......... . t5- X
277. Y2.Y2*LN*SIN(SI)

*251. CALL RESULTtSI.X3.Y3.RHO.M) ........... . ....... ....
232.... ..... -GO TO 20 ..
2832. 19 51.-SI
254. 017 DIRwIMOT
285. 0015 ,,im1.N

*256. C
257. C TO CHECK IF THE ELEMENT IS PRESSURIZED OR NCT
255. C
239. 1V(IP EQ. -2) O TO 30
290. !PCKwl. .. .......

252. C TO CHECK IF THE PLATE IS Al TOP OR BOTTOM
253. C
294. If(IOLf Ad'.' -1) CC TO 40
29!. IF(INCK .10. 0iv4*Rl*HI
296. . NK9
297. P'm*1
291. IF(M .10. 1) GO TO 29
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"' .................. ........ .X oN i F $ N s ) ... ... .. .. .... ... ............ ........ ...... .............................. .... ..........

301 Y2-Y2-NSHIF-COS(SI)
302 39 X2-X2(LN-NDOS)-COS(SI)-VDISISIN(S)
303. Y2*Y2-(LN-H O1S) SIN(SI)-VDIS*COS(SI) ................
304. SImSI-LN/RH0

.305. X3wx2*(Ri*NI)*SIN(SI)
306 Y3*Y24(Ri Hl)*COSISI)- 4
307 R3mRl
3 ........................... H3 . -.
309. CALL R[SULT|S1.x3.3.R0.M)
310. GO TO 15

" 311 40 M=M*i.. ........................ F " * "I N C * K * .E ' -.0 ' ,Y 4 - 1*' H * . ......... .... ...." * *.. .............. .... ... . ............ . .. ..,-312. PIC.OCYu(IH

313 JNCKNI
314. IF(M .Q. 1) GO TO 49
.. 1 5........ .... ........... N S If u( R I .N I)i -( R 3 * H 3 ) ...................................................................................... ..................

316. X2mX2-NSHIF*S!N(SI)
317...... V2.Y2.NSHJF=COS(SI)
" 313 ........... " x2 .x 2.(LN -HOIS)'C OS(S I )-VO.I 'S iS; { ............................... .. .......

319. Y2 Y2.(LN-0ICS).SIN(SI).VDlS6COS(SI)
.... .2 .... ............. ..... X 3 ' 2 ' ; S Z ( S ' '' .... .. . ............. ........... ........ ........... .................................. .... . ............
321. .................. . . . . . . . . . .

322. Y3aY2-(Rti+N1)*COS(SI)-Y4323. R3mRl
23. ....................... ..........................

325. CALL RESULT(SI.X3.Y3.RHO.M)S....26 ............... TO ... .. 1 .............. . . . . - . . . . . . . . .

32. C

328. C TO CHECK DIRECTION OF MOTION OF STRUCTURE
329. C-'39. ........... 'i "T ' 3...............................................................20......0 0 O O 5

331. IM(MOT .E0. -3) GO TO 51
332. T

334. C
33"5. X2eX2#LN*COS(SI) . ....
336. Y2aY2-LNSIN(S)
337. X3eX2*(R34H3)*SIN(SI)
338. Y3"Y2*(R3*M3)oCOS(Si)-Y4

340. 1NCKEI

341........CALL RESULT(SI.x2.Y3.RHO,.)i j C*L** .. ......... .RH0., ..................................... .......... .... .... ........................... ...
242. GO TO 15

343. 51 X2uX2*LN'COS(S])
344. Y2uY2*LN*SIN(SI)
3 4 5 . i 3 X 2 -6 (R 3 43 ) S iN (S I .... .. ........... ............ ... .. ....................... .... ... .... .................

346. ,3Y2-(R3*H3):C;S(SI)-vY
347. M ti -
3 4 8 . IN C K u, i... ...... .. .. ............. .. ..

349. CALL RESULT(SI.X3.Y3,4.M)
350. S0 TO 15
351. C
35:. C WHEN ELEMENTS IN THE BEGINNING ARE NOT PRESSURIZED
353. C
354. 52 X2ax2*LN
3%5. Y2wC.0
356. "Bo, MU..
357. Nat
353. X3=x2
255. YjY
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4 * - -.0 ... ........... .- ... .... ... .. . .. . ..... . ... ... .. ..

31. 15 CONTINUE
362. C LOOP FOR IDENTICAL ELEMENTS IS COMPLETE
6 3 " . .... C O NT I N U E
364. C LOOP FOR FINDING END COORDINATES FOR ALL THE ELEMENTS

S36. 6 C IS COMPLETE
366 . ....... .
367.Mm4
3 .. CALL PICSIZ(20.0.11.0)
2 69 ............................. CALL. GIN( . 10 ..............
370. CALL FACTOR(2.0.2.0)
371. CALL AXIS(-3.0.O.0.23.0.*POSITION OF STRUCTURE IN XIRECTION.. ..................... ............ .6 .. : ; .0 : 0 .. ....... . - - .. ....... ... ..... ....... . .. ............ ......... .. .... ...........

37.1.0.0.2.0.-3.0.20.0)-
373. CALL AXIS(-3.0.0.0.20.0.'POSITION OF STRUCTURE IN YDIRECTION-'
74 . C... ... 0................ ............................ ... ..... ........................... ..... ...................

275.ic CAL SYiOL2.0.-.0.O .
376 I'DEFORMED ROBOTIC ARM ON INTERNAL PRESSURIZATION '.O.0)

>:37T. C CALL PLOT(XORDYORD.MN)...." ..... .............. ............... ................ .. .......... ........ I.... ........ ..... ...... ... ....................................... ............................... ..... .. ........... ..

• 3 0. .C.FORM.AT R NT ............................ ....

283 C NOTOHCTECURN OTONOTHLOD.TTH

..... .....e ......... R. .... ... ...... .... ................ ... .............. ....... .6- b ..C"' " U E " 0 ' " ' " ;T ................................................... ..

385 C THE FINAL DESIRED POSITION AND THEREBY VARY THE MOMENTS
356.S . IN THE ELEMENTS... .............. - ........ .. ............................. ............................ .. ........... .... ... .. ............ ........ ......... ..... ........... ....... ......... .... ...........

388 IF(KK.EQ.1) GO TO 69
..... .s o .. ... .............................. .......... ............................................. ...... ... ........... ............ ... .................. ................................. .. .................39. ... . .. . . .
390. EIvE
391. FlwF

394 C TO EVALUATE THE COORDINATES OF THE CENTER OF THE LOAD
.395. C

396. ........ ... .; i ... o ~ sj .. .. ..
327. YBaY5*(RL*R1 H)*SINtS)
23..... WRITE(3.,5) XB.YB.XF,YF
399. 3........ FORMAT(IN .X9'.E 12.SX.'i'25'5X'XF O'3.*5x..
400. I'YF-'.Ei0.3)

401.XDISsXB-XF4. ..0. 1 ............. ..............x s x m ... . ... .... .................... ................................ .....................................................
402. YDIS-YS-YF
403. IF(IAES(XDIS).LE.1.0).AND.(ABS(YDIS).LE.1.0)) GO TO 60

404. C
405. C NbW TO CHECK THE CURENT POSTION' LOAD W.R:T FINAL POSITION
406. C
407. IF((XDIS.LT.0.0).AND.(YDIS.LT.0.0) GO TO 62
408. IF(LXCIS.LT.O.0).ANO (VDIS.GT.0.0)) GO TO 63
409. I((IXDIS.GT.0.Oi.AND.IYDIS.LT.0.0)) GO TO 64
410. C
411. C HEN LOAD I5t*O THE RIGHT"AND HIGHER...
412. C
.413. N&wNU.1
414. NE NN-3

41G. P2mP1 ...... .... . .. .s .= N ......
417. 00 65 IsNA.MB418. PMOMII)-RMOM(I)&RMOwII)qO1

4 9. PleP1'P2

114

Q ......... ... .. .V. . .. +



4 20.65 CONTINU E ....... .............

421 PoP-P*O.05
422 .O .0 83
423. C
424. C WHEN LOAD IS TO THE LEFT AND LOWER
425. C
42 Nc'Nu... .........
427 NO-NN*-3 •
428. El-El/((2.O(NN-3)-NU))
429. E2"E1

430. DO 66 ImNC.ND
431. RMOM(I)wRMOM(I)-RtAOM(I)-EI.... .................. ............ E I (tE -i - . ; : - . ! -........ . ..... . . ... ........ ..... .. ...........
432.........1-[14E2 ..

433 66 CONTINUE
434. EwE-EwO.O5.... 4 3 15 G O............. . T'" O 8 3 .. .......... .. ..... ....................... ... .......... ...... .... ........ .. ...... ..... ........... .... ............. ... .........
436. C
437. C WHEN THE LOAD IS TO THE LEFT AND HIGHER... .' .... ....... C ...... ........................... ....... ..1. .... .... .... ......... I......... ... ... .. .... .. ..... ... ..
439. 63 Fl-IF/(2.O-NU)

....... .......................... .. .. .................. ..................................................... .........................................441. DO 67 ZI.NU -.

4.42. RMOM(I)-RMOM(I)-RMOMtI)*FI
443. rlnfl+F2...... . 4 ............ ........ .. .o ..... ........... ......... .. ......................... ................... ................. .. I....... ............... ......... ............ ... .. .. .. .............

*444. 67 CONTINUE"S1. FwF-F*O.O5
446. GO TO 83....... ................. .................. .. . ....... . . ....... . .......... ................. ....... ....... . . ............................................................................................. .........
A47.
448. C WHEN LOAD IS TO THE RIGHT AND LOWER

-A' so. 64 GlwGl/(.2..O. JU) ...........

451. G2wG14- 52. DO 63 I-1.NU
5....... i 3 ............................ RM, I ) RMO .. ) .RM . (I ' G j ............. .............................................. .. ..................................

454 GlwG14G2
455* 6. CONTINUE

456. GwGGd'O.'b O5" ,'"* ..*,-...... ...
457. GO TO 83

.. 458. C

460. C

461. C TO EVALUATE PHI.RAD.THETA & DIS FOR THE GIVEN COORDINATES
462 ..9 . .D -.AIs(x)s.2.0.A3S(yI)e-.O) 'O.0 ..........
463. DISS((AeS(XF-XI))'2.04(ABS(VF-YI)),,2.0),0O.!
464. THETA-ACOS((XF-Xl)/DIS)
465. IF(XI.LE.O.O) GO TO 36O

ASS. PHI*ATAN(XI/ABS(YI))
467: GO TO 361
"" 6 3 --' .. .3 E : 'PH I --A T A N( X I / Y l ) .... .. ... ............. ......

469. C THE SEARCHING STARTS NOW
470 C
471 C TO FIND THE CLOSEST PHI
472. 361 2=0
473. 362 Iwloi
474 ..... . .IF(PMI.dT.D( .1.1.1.1)) GO TO 362 . .
475.'
476. DIFF-ASS(PHI-DIK.I.1.1.1))

. 4a77. DIFF2wABS(D( .1tl..)-PHI)
4' -478. IF(DIFF.G7.DIFF2) GO TO 363

479 lax
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480. C
481. C TO FIND THE CLOSEST RAD
482. 363 Julm .... ~~48 3 ... ........ 36 4 U -J- 1 .......... . .. .. .. . .. . . .. .. .... . .

484. IF(RAD.GT.D(I.,J..1.l)) GO TO 364
485 . LuJ-

486 . .... F((RAD- ( . . . ) ) . (D( . . . . )-R ,)) GO. 3. ... .........

4a7. O"L
488. C
4 8 9 . C . # N *E L O S E S T H E TA........ .....................

490* 365 K-l
491. 366 KuK 4
492. F(JHE A.G .D(I..K i.1) GO TO 366 .......

493. M-K-1
494. IF((THETA-D( I[.J.M. 1.1)) .GT.(D(I.J.K.l.I)-THETA)) GO TO 367
495. 

... ............. 
.... ....

496 C
4 97. : ........ C.. C.... TO .IND. .TH E .CLOSEST ..01 S .................... ........................................................
498. 367 N-4
499. 368 NN'1,5.0-0o. Ir(DIS.GT.D(I.J .KN.1)) GO TO 368'':, . 0 4 ..... .....5 0. L -N ..... .D ( .. .N .l .) G ..... 8.... . ........ ............. ........ ........ ..... ... ......... .

502. IF((OIS-D(I.d.K.L.1)).GT.(D(I.1 .K.N.1)-0IS)) GO TO 369
.. .. ' "' 0 3, : ............ ..... .. .. .... . . .... .................... ....... ......... .. ... ... .... ........ .. .. ..... ..... .. ...... .... ........ ......... .. ..... ...... .. ...

504.- L
505. • C TO TRANSFER THE GUESS VALUE 'MOMENTS' IN THE MEMBERS TO
506. C START THE ITERATIVE PROCEDURE

508. 363 DO 370 Ml-.NN
--."".......... ............... ..... ......... ... .. .. ... - ........... . .) .......... ........... .. . .. .............. ............................ .................... .... .......... ...510. RMMI)D..KNM

511. 370 CONTINUE
..--, 512 .. C_-.. .: ................ C ............. ..... '...... . i N ............ . ........... ....................... ...........................................................................

513. C THE GUESS MOMENT VALUES HAVE BEEN LOCATED
514. C

915. 83 WRITE(3.57)KK
516* I 57 .. R.A T. ."ITERATION NC"' .2.;"' .5 "COMPLETE ") ........... ......... ... ....
S17. 56 CONTINUE
518. C MAIN LOOP ENDS NOW
t m. TH ....... t T Mt kCUR HAS BEEN EVALUAT b WITHIN 25 ITERATIONS . ......... ...... ....

520. C
- - •521: C.J l ...~~~~.. . ' ............. .. .............. bio t i l .. 0' 9 ) .. .... . ... ................ ....... .. .. . ... . . . ..

523 97 FORMAT(IH .'NOT POSSIBLE TO REACH GOAL IN 25 STEPS')
524. GO TO 172: " : S = S " 

l 
..... € . ... ... .. . .. .. .... . .... .... . .. . .. ... . ......... . . . . . .

525. C
' '526. 60 CALL PICS12(0.0.0 0)

527. C
528- C.... ............... ......... ................
529. C
530. C ...... ......
531. C a THE DATABASE IS CHECKED At.* THE PRESENT RESULTS ARE
532 C , INSERTED IN THE PROOER PLACE IN THE DATABASE IF NEEDED
E33. C a*e.a''... 0." ................ ........ .......... 0 ....
534. C

535. IDIS.((X-XI)2.01(YE-NI)112.0)110 5

53e. THETA-ACOS((XB-XI), 0!S)
537. C TO PUT PHI IN PROPER PLACE IF REGUIRED
538. 180
539. 127 I .41

'U",.:
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540. ........................ IF(ABS(PHI-D(I.I1. .1.)).LE.0.OO009)-G OO 126 ..... ..... .....
541. C NO NEED TO INSERT
542. F(PNI.GT.O(l.I.1. )) GO TO 127""43 .............. c ............ TO NSt ANt US4 THE DATA DOWN SU.SS . .................... . .
544. IPUI
SAS. 00 150 m1-.N2
546. IF(D(I.11.I l).EQ.1000.0) GO TO 151
547. 150 CONTINUE
545. .151 IK-uI...,++ .-.... .... " .. ' -................. ..... .........;( k N O ....... ......... ... ........................... ...... ......... ..... ......... ... ... .... ..................
5 -49.* IF(IK.GT.N2) GO TO0169
550. C THE INSERTION AND SHIFTING LOOP STARTS NOW
551. D(IK..1.1.)uD(I.1.1.1.1)."" S .... .... ......... .. l ...... ... .... . .... ... ..I.. ..... ............. .. ........ ....................... ...... .......... ............ .. .. ...... .......

552. IKsIK-I
553. 1-1-1
554. IPS-IP-1
555. 11DI(1K.E.lIP.)eGO(TO166..
557. .....................DO .152 . .2.. .

.5 5 -...................... ... D (i , .J.'.-f.-I ).,D (. 'J.1.. . '1.. ..... .. ................................ ......................................................... .

559 IF(D(I.,J.1.1.1).EO. 1000.0) GO TO 153
6 .. .................... 1 .............................

561. 15W JJ.4--f........
562. 00 154 Js2.,J

....... ........ D ( I .K . .. ,K , I )m .D i . .. K. I ) .......... .... ...... ..... .......... ...... ....... ............ ... ... .... . . .... ...

565' IF(D(I.J.K.I.1).EO.IOO.O) GO TO 156
5 6E...................... ........ .............................................................................................. .............................................

567124 CONTiNUE
568 156 KKuK-156"S9. DO 157 dIa2................. . . . .

570 00 153 Js2.JJ
-'1 6 -------0 ---D0 ................ ..... "1 "K -2 K ... ................ . ... ........................... ..... .. ..... .................. ... ................. ....... .... ............... .....

571. DO 159 Lm2.M7
572. .. I....K, i)- ( ,..I.J) ............ ........ ....w ..... ) ........ ..................... ...................". 11 . ................. .. ..........................

57 1 COTIU ............T. 16574: 157 CONTINUE

573. 0 LLL12K2
576. 157 C NINUE .. ... .....

...s ............................... 0 14 2 K a -.K .. .. ...... ................................. ... ........................................... ....... ...... ..... .........

50 DO 163 Lw2.LL
561. DO 164 LMa2.NX
562 . D(IK.J.K.L.LM)-D(1.J.K.L.LM)
583. IF(D(I.J.K.L.LMH.EO 1000.0) GO TO 165
54. 164 CONTINUE

.... i45 163 CONTINUE
S58 162 CONTINUE
567 161 CONTINUE
58 C TO GO UP ONE INOEY AND PUS'k DOWN
589 165 !F(]K.EO.IP) GO TO 166
590. IKIK-I

532. C TO 167
• 593. C SIFTING IS COMPLETE

594. 166 D( .. 1.1.I
595. D(IK,2,1,1,1)-AD

. 97.. 6 ................... O(IK.2.1 . )-TH A.. .
137. OIK.2.2.1.1).THOE 0
99. D(IX.2.3.1.1)vIOOCO0
599. D(IK.2.2.2.1)-DIS
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............ ... o .k . i )a o .b ... . ... ........ ........ .... . .... ............ ....... ...

601. MC-NN*I
6 0 2 . 00 16 8 ?1u 2 .M C .................... ............. .................................
603. KKwII-t
604. DfIK.2.2.2.IB)wRMOM(KK)
605. 168 CONTINUEeb0 s ., ... ............. ..... .. ,e- -o...... - - "' , - - --.. ..... .... ....... ......... . .. ... ............ . ... .. .. ..... .. .. .. . .. .... .

607. O(IK.2.2.2.MC)-I000.0
Go. C INSERTION COMPLETE GO TO WRITE FILE AREA
609. GO TO 170
610. C

Oil. C ERROR MESSAGE IF FIRST DIMENSION WAS EXCEEDED4 ..C ER2O ........... .F .F...O N NS O ... ... ............ .. ......... ......... ............
612. WRIvmTE(3, 171)
613. 171 FORMAT(IM .'THE FIRST DIMENSION WAS EXCEEDED')
.14. . GO TOENDO OF PROGRAM
615. . O TO 172

616. C
617. C IF PHI WAS NOT INSERTED SEARCH TO SEE IF RAD NEEDS

61. C TO BE INSERTED IN THE DATABASE
619. 126 Ja1
620 174 JsJ#I....... I= ...... ......................i ( s o b i i. . )" o ' ............. ..... ..... ...
621 I(S(DOi 1 I .. 1'.C009 O7 .
622. IF(RADGT.D(I.d.1)) GO TO 174
623. C TO INSERT RAD4 , .. .. .... ... . . ... .......... ... .... ....... .. ... ..... . .... . ..p u

625. DO 175 0 G2.M2
62. 175 CONTINUE

628 176 K.+Jl
621. IF(uJK.GT.M2) 60 TO 177............... - . . . -......... ..... ................ ........ ..... o.T " . .;O ' .. ..' ."i .... .... . ....... ....................... ............ ............. ...... ........................................
630. 01 .. I*11u . 1*)
631. dKwJK-1
632. JI-1

634. 13S IF(J.E.JPi) GO To 137

. 635. .. ...................... . ... ... ...1) ... ....... ............................... ....... .. ...............
636. 00 178 Kw2.N7
637. D(I.JK.K.1.1)uDiI.J.K.1.1)
638. IF(D(I.J.K.I.I).EO.1000.O) G0 TO 179
639 *C'O NUE ... . . .
640 179 KKwK-I
641 00 180 K*2.KK
642 O0 181 La2.M7

6. A .... F(D(I.J.K. I.).EO.1000.0) GO 7T0 132... ...........
615. 1' CONTINUE
646 180 CONTINUE
647 182 LLvL-1
64B. 00 183 K*2.KK
649. 00 1A Lw2.LL
sIC. 00 135 LM,2.M1 .

651 . (,Jk.K.L.LM)-D(I ..J..K..L..LM)
652. IF(D(I.J..K.L.LM).E0.1000 0) GO TO 186
453. 195 CONTINUE
654. 134 CONIINUE . ..

655. 183 CONTINUE
656. C 00 UP AND PUSH DOWN AGAIN
657. C
659. 16 IF(JK.EO.JP) GO TO 187
6S9. JKdJK-i
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G A O ., .... .... . . -d .... ... . . .. ....... . .... ............ ......... .. ....... .. ... .
661. G0TO lee

662. 137 D(I.JK.1...I)-RAD
663. D( I .JK.2 jJ-. ..)THETA
664. D(I,.,.3,1,1).1000.0
66.5....... D(IJK,2,2,1).DIS.

666. (tJ...)00.
T67. MC-NNi

668. DO 189 IBS2.MC
669 KK-....
670. D(I .JK.2.2.IB)-RMOW(KK)
671. 189 CONTINUE
0 ? 2 ..... .. .. .. .' M C , M C I .... ...... .... ............. ............... ...... : ... ........ .... .... ..... ......... .... ...... .. .... ...... ....

673. D(I.JK.2.2.MC)wIOOO 0
674. GO TO 1706t ........... c THE SECOND DIMENSION WAS EXCE ED ED
676* 177 WRITE(3.190)
677. 190 FORMAT(IH .'THE SECOND DIMENSION HAS BEEN EXCEEDED')
678. C GO TO TE END OF PROGRAM WITHOUT REWRITING THE DATAFILE

679. GO TO 172

O C IF PH I RA WERE NOT INSERTED. CHECK FOR THETA
682 C..618.3 ! ..... ........ ..... 17 3 ... K - ... ................................ ..... .............. I................. ...... ......... .................... ........................... .. ............... .....
684 192 KK1I
6s. IF(ABS(THETA-D(I.J.K.1.1)).LE.O.00009) GO TO 191
6G6. IF(THETA.GT.D(.,JK.I.1)) GO TO 192"S ...... ........ -".............. . .N S .' ... .. ... .......... ... ....... .... ........ ... .................. ........... .......... ........... .... .. ............... ....

87 ~ y C TO NSER THETA
* 633 KPuK

689* 00 193 Kw2.N7
6 90.. . . (D'I'JK.'T.'O10CT) O"T ...
691. 193 CONTINUE

692. 194 KK&K4I...

," s ........ .................. .. .... ...... ........ .. .. ...... .... ............ ............. ........... .................... ..... ........... ... ....... ...... .. ..69A Gg. D(I.JKK, 1,1)-D(I ,i.K,.1~)
Ss . .... .........6... ................KK K -............................. ... . ...

696. KinK-I
697. KPI=KP-1

698. 202 IF(K.EOKP1) GO TO 201
69 ................. tJ(x .KK.1.i)O(I. . .K. i ) .... ... .. .........................................
700 DO 196 Lw2.M7
701. D(I,,JKK.L. 1)aD(I.1 J.K.L.,1).

?C2. I F (o '. .L.I). Er..1000.06) GO T 197 .........- ...
70. 196 CONTINUE
704. 197 LLuL-1
7651 DO 195i L*=. LL
706 *00 199 LlMU2.MY
707. D(I.J.KK.L.LMl-D(I.!.K.L,LM)
708 . . (O(I...K.L.LV).EQ.10O .o) 60 TO 200
709 199 CONTINUE
710. 19e CONTINUE
711 .. C GO UP AND PUSH DOWN AGAIN .. .................. ........

712. 200 IF(KK.EO.KP) GO TO 2C1
713- K-K-1
714. K.K*Kk-i ...
715. 0 TO 202

717...........(I.J.;K.21. 1)C70I

71e. 1D(1.J.KK.3.1)ol000ET
719. MCONN-61
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721 *Mz I B- I

723. 272 CONTINUE
724. "Co"Coi
725. D(I..J.~K2.#MC)m100.0
7126. ..t C...... INSERTION COMPLETE GO TO WRITE OfIE AREA...
727. GO TO 170
725. C.THE THIRD DIMENSION HAS BEEN EXCEEDED
7126 ... ....... ..4 i 4 i E(3.203) -. .....I -. ........... I.................

730 20i FORMAT( ;H .- THE THIRD D!IENSION HAS BEEN EXCEEDED')
*731 C 6O TO END Of PROGRAM WITHOUT REWRTN TEDAFLE
-732 .6....0 ... O TO -172. ......... ..... ....RTN THE. . DATA..F-I... . ..... .

733 * C ETO HC O 1
7.34:...... C ...... IF..PHI.RAD & THMETA .WE.RE NOT -INS.ER... HC O I
735. C
736. 131 Lai

A 737.....205 LwL1l
73e6 .. E"'s(I-(I...L1)..000960* TOD 2371......
739. '0DS0.DI,..L1)G TO 205
740. C TO INSERT 01...............-

742 00 206 L.2.M7

744. :6 CONTINUE
745. 207 LK.L*t
746. FL.TM)W.02.

......... .- **.*...... '*Dt.. .'J.-FL.... OTO20

746. LKsLK-1

751. 212 IF(L.EO.LPI) GO TO 211
7 52.0( qKLK)D(.JKL)

753. 0 209 LM*2.MX
754.G O(I .J. K.L K. LM ) aD( I .J. K .L .LM
7tt........IF(D(I.%J.K.L.LMl.EQ.1000.O) GO0TO 21C
...756 .... ..... 209 CONTINUE. . ... ........................... .....

757. C O UP AND PUSH DOWN AGAIN
758. *210 IftLK.EQ.LPJ GO TO 211

760. LmL1
761. GO TO 212

762. 211MCwNN4I
763. 00 213 13w2.MC
764, M2616-1,
765. V(I...KLK.I)RMM(MZ)
766. 213 CONTINUE

7676 0(I."J.KlK.C' OC

769. C INSERTION COMPLETE GC TO WRITE FILE AREA
770, GO TO 170
17 4. C THE FOURTH DIMENSION WAS EXCEEDED
772, 209 WRITE(3.21A)

775, GO TO 172
776. C
777. C
775B. C TO OVERWRITE THE DATAFILE WITH THE NEW DATA
779. C
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731. C
732. 170 DO 215 ImI.N2

784. 216 FORMAT(ElI.d)

705.5 IF01 ... 1.Q.000) GO TO 217

78.........WRITE ALL THE 'RAO'

790. 217 DO 216 Ial.N2

791. GO 20 21 .........

793. WRITE(40,221)D(.J..)
794* 221 FORMAT(ElI.4)
7p9 . RF(..I....................O..O.21
796. 220 CONTINUE
797. 26CNIU

2..... 6 ....CONT ...INUE. ..................... ................. ..........................

799' C WRITE ALL THE 'THETA'

301 .............. 219 ..O 2. 2 ................N ...... ....... ... . ................ ....... ......................... .......... .... ......

602. IFID(1.1.1.1.1).EO.1000.0) GO TO 223
-~3.........00 224 Ju2.M2

604. IF(D(I. j.I.1.1).EO .1000 .0 GO TO 22 2
p806. .0O 225 Kw2.N7

306. WRITE(40.226) D(I.,J.K.1.1)..........
&o7............ 2 26FO RMAT Ei1.4)
308. IF(D(I.J.K.1.1).EQ.tOK=.0) GO TO 224
809. 225 CONTINUE

.1. *2'CNZU.............- 2 2-.O.NT..NU-

311. 222 CONTINUE
3912. C
a313. - - .C..- - WRI *T,E *,AL*L ,,TH*E *,*'61'....**,*"*................-.....
514., C

$s 223 00 223 lol:N2 OO22

317. Or, 230 J;2.M2

820. IF(D(I.1 1.K.1.1).EO. 1000.0) GO TO 230
321. CC 233 Lu2.M7

323. 234 FOQMAT(Eli.A)
624. IF(O(I.,J.K.L.1).EQ.1000 0) GO TO. 231.....
325. 233 CONTINUE
326. 231, CONTINUE
327. 230 CONTINUE
923 ' '26 CONTINUE'
629. C
830. C WRITE ALL THE ELEMENT MOMENTS
831 C
8 32 229 00 236 Il.N2
33. . 'OIi...0E.10.)G TO 237
134. D0 233 1ja2.M2
835. IFMDI. 1J.1.1.1).EO.1000.01 GO TO 236
93. DO 239 Kw2.N7
3327 !FDI..K1. 1).E0. 1000.1b) GO TO 233'
33. 00 241 L'2.M7
829. :F(O(I.%J.K.L.1).EO.1000.0) 60 TO 239

121

.P.



-~~~~~~~ -w W- W. --- - - - 4 b VrqIrvv S *

846. DO 213 4i2.16.. ...... .......

541. WRITE(40.244) DII.sJ.K.L.M)
542. 244 FOPMAT(ElI 0 

. . ....843 ........ .. IF (D( I.J.K.L.k).-Eb. 1066.6) 00- TO' 2 41 ...

*44. 243 CONTINUE
85 . 241 CONTINUE...... ...............
346 23 ......... CONTINUE
547. 230 CONTINUE
346. 236 CONTINUE.,....... . ....... .. .. ....... ........ ... ........ . .............. .................. .

4~51. C.......... ...... . . .. . ..... ...................... .............. -... ....

353 ' C a TO CALCULATE TH4E ADDITIONAL MOMENT DUE TO THE LOAD
8554 C.* TO CALCULATE THE X-COORDINATE OF POINT C
355. C...es
ess. C
857. 237 GAMAwA8S(S!-3*LN/SNO)

515 RM3SW~~u(RL*R l+H)........- . . . . . . . .

859 XCUX4(UL*Ri*H)COSGAMA)
260: ................ M2.w i a(RL +R I H)aCOS (GAMA.)........................... .................... I.......
261.........0 70 ,Jui.kU
&G2. RMOM(4)sRMM(J)-gM2V1S(XC-XOD(U))
6543. 70 CONTINUE ... .

as5 NGeNJI-3

847. ......... ..... 07 3MO ND .NMJ.M-1x-O0I)...................

V 6671 CONTINUE
$69. __ NmeNN-2

570~~~~~~~~~.. 0 2JN........- -. . ..........

571 SO()EO()M
-. 72l........... 72 -*CONTINUE
673.............. .............. .....
$74. 53 FORMAT( H .*TOTAL MOMENT. '.f10.3)

575. 172STOP * .

576. END
877. /0
578. //6.T40FO01 DO DSN'O~u.006.ZU2 42 UMESH LDATA.OISPuOLD
373. -- *//d.DI~EPLdT 00 SYSOUT-C
530. //OSYSIN Do
Doi. 1010 5 0.lO4dE'01 0.2E*01 Olt-ol
552. '-*-O. 95 llaOi -0.14E-02 0.31.01 ...........1

063. 142-1 1-3
$54. 1-2-1 1-3
315. 1-2-1 1-3
gas. 102-1 1-3
587. .1*2-1 1-3
ilea 1#201 103
559. 12,.. 1.3
590. 14.' 0 1.3
991. 1&241 1*3
992. 1.2.' t-3
313. 0.2E*O2 0.115E&02 0 l!E-C2 0.1011-01 O.173E00C 0.2E&C1 0.SE400
894. 0 26E'C2 C 764EoCi C.&M9-02 C 2251-01 C.26E00O.EO O.SE*00
Its 51. 0 3E'02 0 573E#01 0 498E-C2 0.404J-01 0.346E*00 0.2E-01 0.51.00

-- 506 0.71E02 0 &531.01 0.497E-02 0-930f-Ol 0.431'00 0.2E-01 0.5f-00
337. C 41.02 0 352E*01 0.49GE-02 0 9011-01 0.512f#00 0.2E-01 0.51.*00
596 0 151.02 0.327E*04 0.4351-02 0.i23E*00 0.593E-00 0.21.01 0.SE0
got. 0 SE*02 0.287E*01 0 144-02 0. SSEo00 0.669E*00 0.2E-0l 0.51000
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3066 0.!51*062 0.255E'01 0 4331j-02O 0.199E*0007540 .Eo< C E
301. 0.14102 0.223E*01 0.492E-02 0.24!E'00 0.9i9E-0 0 .2E'01 C.SEC-D
302. C. 71.02 0.1311.01 0.431E-02 0.345E-00 0.355E*O00 0.21.01 0 5E*0C.663.. .. .... ........... .. -o ..... oo o. - .. o.4: . . s [ .it- l... .- .. .

03. 3 4 4 4 13q
304.

'I

• ,4

r r....... ... .... ........... ..... .. ...... ........... .......

S....... .. .... ........ ... ........ ... . ..... ........... ......... ..... ... ...... ... .......
.. ................ ........ .. .... ... .. . ... .... .. ... ......... .. ... . .... .....

... ..... ....... ... .. ....... ..... .. ..... ... .. .. .. .. ... ............ .... .... ..... ....... .. ..... ... ... ......
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